Metamath Proof Explorer


Theorem blcom

Description: Commute the arguments to the ball function. (Contributed by Mario Carneiro, 22-Jan-2014)

Ref Expression
Assertion blcom
|- ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ ( P e. X /\ A e. X ) ) -> ( A e. ( P ( ball ` D ) R ) <-> P e. ( A ( ball ` D ) R ) ) )

Proof

Step Hyp Ref Expression
1 elbl2
 |-  ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ ( P e. X /\ A e. X ) ) -> ( A e. ( P ( ball ` D ) R ) <-> ( P D A ) < R ) )
2 elbl3
 |-  ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ ( A e. X /\ P e. X ) ) -> ( P e. ( A ( ball ` D ) R ) <-> ( P D A ) < R ) )
3 2 ancom2s
 |-  ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ ( P e. X /\ A e. X ) ) -> ( P e. ( A ( ball ` D ) R ) <-> ( P D A ) < R ) )
4 1 3 bitr4d
 |-  ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ ( P e. X /\ A e. X ) ) -> ( A e. ( P ( ball ` D ) R ) <-> P e. ( A ( ball ` D ) R ) ) )