| Step |
Hyp |
Ref |
Expression |
| 1 |
|
blcvx.s |
|- S = ( P ( ball ` ( abs o. - ) ) R ) |
| 2 |
|
simpr3 |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> T e. ( 0 [,] 1 ) ) |
| 3 |
|
elicc01 |
|- ( T e. ( 0 [,] 1 ) <-> ( T e. RR /\ 0 <_ T /\ T <_ 1 ) ) |
| 4 |
2 3
|
sylib |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( T e. RR /\ 0 <_ T /\ T <_ 1 ) ) |
| 5 |
4
|
simp1d |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> T e. RR ) |
| 6 |
5
|
recnd |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> T e. CC ) |
| 7 |
|
simpr1 |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> A e. S ) |
| 8 |
7 1
|
eleqtrdi |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> A e. ( P ( ball ` ( abs o. - ) ) R ) ) |
| 9 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
| 10 |
|
simpll |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> P e. CC ) |
| 11 |
|
simplr |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> R e. RR* ) |
| 12 |
|
elbl |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ P e. CC /\ R e. RR* ) -> ( A e. ( P ( ball ` ( abs o. - ) ) R ) <-> ( A e. CC /\ ( P ( abs o. - ) A ) < R ) ) ) |
| 13 |
9 10 11 12
|
mp3an2i |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( A e. ( P ( ball ` ( abs o. - ) ) R ) <-> ( A e. CC /\ ( P ( abs o. - ) A ) < R ) ) ) |
| 14 |
8 13
|
mpbid |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( A e. CC /\ ( P ( abs o. - ) A ) < R ) ) |
| 15 |
14
|
simpld |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> A e. CC ) |
| 16 |
6 15
|
mulcld |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( T x. A ) e. CC ) |
| 17 |
|
1re |
|- 1 e. RR |
| 18 |
|
resubcl |
|- ( ( 1 e. RR /\ T e. RR ) -> ( 1 - T ) e. RR ) |
| 19 |
17 5 18
|
sylancr |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( 1 - T ) e. RR ) |
| 20 |
19
|
recnd |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( 1 - T ) e. CC ) |
| 21 |
|
simpr2 |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> B e. S ) |
| 22 |
21 1
|
eleqtrdi |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> B e. ( P ( ball ` ( abs o. - ) ) R ) ) |
| 23 |
|
elbl |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ P e. CC /\ R e. RR* ) -> ( B e. ( P ( ball ` ( abs o. - ) ) R ) <-> ( B e. CC /\ ( P ( abs o. - ) B ) < R ) ) ) |
| 24 |
9 10 11 23
|
mp3an2i |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( B e. ( P ( ball ` ( abs o. - ) ) R ) <-> ( B e. CC /\ ( P ( abs o. - ) B ) < R ) ) ) |
| 25 |
22 24
|
mpbid |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( B e. CC /\ ( P ( abs o. - ) B ) < R ) ) |
| 26 |
25
|
simpld |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> B e. CC ) |
| 27 |
20 26
|
mulcld |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( 1 - T ) x. B ) e. CC ) |
| 28 |
16 27
|
addcld |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. CC ) |
| 29 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
| 30 |
29
|
cnmetdval |
|- ( ( P e. CC /\ ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. CC ) -> ( P ( abs o. - ) ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) = ( abs ` ( P - ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) ) |
| 31 |
10 28 30
|
syl2anc |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( P ( abs o. - ) ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) = ( abs ` ( P - ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) ) |
| 32 |
6 10 15
|
subdid |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( T x. ( P - A ) ) = ( ( T x. P ) - ( T x. A ) ) ) |
| 33 |
20 10 26
|
subdid |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( 1 - T ) x. ( P - B ) ) = ( ( ( 1 - T ) x. P ) - ( ( 1 - T ) x. B ) ) ) |
| 34 |
32 33
|
oveq12d |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) = ( ( ( T x. P ) - ( T x. A ) ) + ( ( ( 1 - T ) x. P ) - ( ( 1 - T ) x. B ) ) ) ) |
| 35 |
6 10
|
mulcld |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( T x. P ) e. CC ) |
| 36 |
20 10
|
mulcld |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( 1 - T ) x. P ) e. CC ) |
| 37 |
35 36 16 27
|
addsub4d |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( ( T x. P ) + ( ( 1 - T ) x. P ) ) - ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) = ( ( ( T x. P ) - ( T x. A ) ) + ( ( ( 1 - T ) x. P ) - ( ( 1 - T ) x. B ) ) ) ) |
| 38 |
|
ax-1cn |
|- 1 e. CC |
| 39 |
|
pncan3 |
|- ( ( T e. CC /\ 1 e. CC ) -> ( T + ( 1 - T ) ) = 1 ) |
| 40 |
6 38 39
|
sylancl |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( T + ( 1 - T ) ) = 1 ) |
| 41 |
40
|
oveq1d |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T + ( 1 - T ) ) x. P ) = ( 1 x. P ) ) |
| 42 |
6 20 10
|
adddird |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T + ( 1 - T ) ) x. P ) = ( ( T x. P ) + ( ( 1 - T ) x. P ) ) ) |
| 43 |
|
mullid |
|- ( P e. CC -> ( 1 x. P ) = P ) |
| 44 |
43
|
ad2antrr |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( 1 x. P ) = P ) |
| 45 |
41 42 44
|
3eqtr3d |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T x. P ) + ( ( 1 - T ) x. P ) ) = P ) |
| 46 |
45
|
oveq1d |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( ( T x. P ) + ( ( 1 - T ) x. P ) ) - ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) = ( P - ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |
| 47 |
34 37 46
|
3eqtr2d |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) = ( P - ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |
| 48 |
47
|
fveq2d |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) ) = ( abs ` ( P - ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) ) |
| 49 |
31 48
|
eqtr4d |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( P ( abs o. - ) ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) = ( abs ` ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) ) ) |
| 50 |
10 15
|
subcld |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( P - A ) e. CC ) |
| 51 |
6 50
|
mulcld |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( T x. ( P - A ) ) e. CC ) |
| 52 |
10 26
|
subcld |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( P - B ) e. CC ) |
| 53 |
20 52
|
mulcld |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( 1 - T ) x. ( P - B ) ) e. CC ) |
| 54 |
51 53
|
addcld |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) e. CC ) |
| 55 |
54
|
abscld |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) ) e. RR ) |
| 56 |
55
|
adantr |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( abs ` ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) ) e. RR ) |
| 57 |
51
|
abscld |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( T x. ( P - A ) ) ) e. RR ) |
| 58 |
53
|
abscld |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) e. RR ) |
| 59 |
57 58
|
readdcld |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) e. RR ) |
| 60 |
59
|
adantr |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) e. RR ) |
| 61 |
|
simpr |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> R e. RR ) |
| 62 |
51 53
|
abstrid |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) ) <_ ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) ) |
| 63 |
62
|
adantr |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( abs ` ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) ) <_ ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) ) |
| 64 |
|
oveq1 |
|- ( T = 0 -> ( T x. ( P - A ) ) = ( 0 x. ( P - A ) ) ) |
| 65 |
50
|
mul02d |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( 0 x. ( P - A ) ) = 0 ) |
| 66 |
64 65
|
sylan9eqr |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ T = 0 ) -> ( T x. ( P - A ) ) = 0 ) |
| 67 |
66
|
abs00bd |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ T = 0 ) -> ( abs ` ( T x. ( P - A ) ) ) = 0 ) |
| 68 |
|
oveq2 |
|- ( T = 0 -> ( 1 - T ) = ( 1 - 0 ) ) |
| 69 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
| 70 |
68 69
|
eqtrdi |
|- ( T = 0 -> ( 1 - T ) = 1 ) |
| 71 |
70
|
oveq1d |
|- ( T = 0 -> ( ( 1 - T ) x. ( P - B ) ) = ( 1 x. ( P - B ) ) ) |
| 72 |
52
|
mullidd |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( 1 x. ( P - B ) ) = ( P - B ) ) |
| 73 |
71 72
|
sylan9eqr |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ T = 0 ) -> ( ( 1 - T ) x. ( P - B ) ) = ( P - B ) ) |
| 74 |
73
|
fveq2d |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ T = 0 ) -> ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) = ( abs ` ( P - B ) ) ) |
| 75 |
67 74
|
oveq12d |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ T = 0 ) -> ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) = ( 0 + ( abs ` ( P - B ) ) ) ) |
| 76 |
52
|
abscld |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( P - B ) ) e. RR ) |
| 77 |
76
|
recnd |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( P - B ) ) e. CC ) |
| 78 |
77
|
addlidd |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( 0 + ( abs ` ( P - B ) ) ) = ( abs ` ( P - B ) ) ) |
| 79 |
29
|
cnmetdval |
|- ( ( P e. CC /\ B e. CC ) -> ( P ( abs o. - ) B ) = ( abs ` ( P - B ) ) ) |
| 80 |
10 26 79
|
syl2anc |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( P ( abs o. - ) B ) = ( abs ` ( P - B ) ) ) |
| 81 |
78 80
|
eqtr4d |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( 0 + ( abs ` ( P - B ) ) ) = ( P ( abs o. - ) B ) ) |
| 82 |
25
|
simprd |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( P ( abs o. - ) B ) < R ) |
| 83 |
81 82
|
eqbrtrd |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( 0 + ( abs ` ( P - B ) ) ) < R ) |
| 84 |
83
|
adantr |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ T = 0 ) -> ( 0 + ( abs ` ( P - B ) ) ) < R ) |
| 85 |
75 84
|
eqbrtrd |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ T = 0 ) -> ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) < R ) |
| 86 |
85
|
adantlr |
|- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T = 0 ) -> ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) < R ) |
| 87 |
6 50
|
absmuld |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( T x. ( P - A ) ) ) = ( ( abs ` T ) x. ( abs ` ( P - A ) ) ) ) |
| 88 |
4
|
simp2d |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> 0 <_ T ) |
| 89 |
5 88
|
absidd |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` T ) = T ) |
| 90 |
89
|
oveq1d |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( abs ` T ) x. ( abs ` ( P - A ) ) ) = ( T x. ( abs ` ( P - A ) ) ) ) |
| 91 |
87 90
|
eqtrd |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( T x. ( P - A ) ) ) = ( T x. ( abs ` ( P - A ) ) ) ) |
| 92 |
91
|
ad2antrr |
|- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> ( abs ` ( T x. ( P - A ) ) ) = ( T x. ( abs ` ( P - A ) ) ) ) |
| 93 |
29
|
cnmetdval |
|- ( ( P e. CC /\ A e. CC ) -> ( P ( abs o. - ) A ) = ( abs ` ( P - A ) ) ) |
| 94 |
10 15 93
|
syl2anc |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( P ( abs o. - ) A ) = ( abs ` ( P - A ) ) ) |
| 95 |
14
|
simprd |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( P ( abs o. - ) A ) < R ) |
| 96 |
94 95
|
eqbrtrrd |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( P - A ) ) < R ) |
| 97 |
96
|
ad2antrr |
|- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> ( abs ` ( P - A ) ) < R ) |
| 98 |
50
|
abscld |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( P - A ) ) e. RR ) |
| 99 |
98
|
ad2antrr |
|- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> ( abs ` ( P - A ) ) e. RR ) |
| 100 |
|
simplr |
|- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> R e. RR ) |
| 101 |
5
|
ad2antrr |
|- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> T e. RR ) |
| 102 |
|
0red |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> 0 e. RR ) |
| 103 |
102 5 88
|
leltned |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( 0 < T <-> T =/= 0 ) ) |
| 104 |
103
|
biimpar |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ T =/= 0 ) -> 0 < T ) |
| 105 |
104
|
adantlr |
|- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> 0 < T ) |
| 106 |
|
ltmul2 |
|- ( ( ( abs ` ( P - A ) ) e. RR /\ R e. RR /\ ( T e. RR /\ 0 < T ) ) -> ( ( abs ` ( P - A ) ) < R <-> ( T x. ( abs ` ( P - A ) ) ) < ( T x. R ) ) ) |
| 107 |
99 100 101 105 106
|
syl112anc |
|- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> ( ( abs ` ( P - A ) ) < R <-> ( T x. ( abs ` ( P - A ) ) ) < ( T x. R ) ) ) |
| 108 |
97 107
|
mpbid |
|- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> ( T x. ( abs ` ( P - A ) ) ) < ( T x. R ) ) |
| 109 |
92 108
|
eqbrtrd |
|- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> ( abs ` ( T x. ( P - A ) ) ) < ( T x. R ) ) |
| 110 |
20 52
|
absmuld |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) = ( ( abs ` ( 1 - T ) ) x. ( abs ` ( P - B ) ) ) ) |
| 111 |
17
|
a1i |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> 1 e. RR ) |
| 112 |
4
|
simp3d |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> T <_ 1 ) |
| 113 |
5 111 112
|
abssubge0d |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( 1 - T ) ) = ( 1 - T ) ) |
| 114 |
113
|
oveq1d |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( abs ` ( 1 - T ) ) x. ( abs ` ( P - B ) ) ) = ( ( 1 - T ) x. ( abs ` ( P - B ) ) ) ) |
| 115 |
110 114
|
eqtrd |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) = ( ( 1 - T ) x. ( abs ` ( P - B ) ) ) ) |
| 116 |
115
|
adantr |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) = ( ( 1 - T ) x. ( abs ` ( P - B ) ) ) ) |
| 117 |
76
|
adantr |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( abs ` ( P - B ) ) e. RR ) |
| 118 |
|
subge0 |
|- ( ( 1 e. RR /\ T e. RR ) -> ( 0 <_ ( 1 - T ) <-> T <_ 1 ) ) |
| 119 |
17 5 118
|
sylancr |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( 0 <_ ( 1 - T ) <-> T <_ 1 ) ) |
| 120 |
112 119
|
mpbird |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> 0 <_ ( 1 - T ) ) |
| 121 |
19 120
|
jca |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( 1 - T ) e. RR /\ 0 <_ ( 1 - T ) ) ) |
| 122 |
121
|
adantr |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( ( 1 - T ) e. RR /\ 0 <_ ( 1 - T ) ) ) |
| 123 |
80 82
|
eqbrtrrd |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( P - B ) ) < R ) |
| 124 |
123
|
adantr |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( abs ` ( P - B ) ) < R ) |
| 125 |
|
ltle |
|- ( ( ( abs ` ( P - B ) ) e. RR /\ R e. RR ) -> ( ( abs ` ( P - B ) ) < R -> ( abs ` ( P - B ) ) <_ R ) ) |
| 126 |
76 125
|
sylan |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( ( abs ` ( P - B ) ) < R -> ( abs ` ( P - B ) ) <_ R ) ) |
| 127 |
124 126
|
mpd |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( abs ` ( P - B ) ) <_ R ) |
| 128 |
|
lemul2a |
|- ( ( ( ( abs ` ( P - B ) ) e. RR /\ R e. RR /\ ( ( 1 - T ) e. RR /\ 0 <_ ( 1 - T ) ) ) /\ ( abs ` ( P - B ) ) <_ R ) -> ( ( 1 - T ) x. ( abs ` ( P - B ) ) ) <_ ( ( 1 - T ) x. R ) ) |
| 129 |
117 61 122 127 128
|
syl31anc |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( ( 1 - T ) x. ( abs ` ( P - B ) ) ) <_ ( ( 1 - T ) x. R ) ) |
| 130 |
116 129
|
eqbrtrd |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) <_ ( ( 1 - T ) x. R ) ) |
| 131 |
130
|
adantr |
|- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) <_ ( ( 1 - T ) x. R ) ) |
| 132 |
57
|
adantr |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( abs ` ( T x. ( P - A ) ) ) e. RR ) |
| 133 |
58
|
adantr |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) e. RR ) |
| 134 |
|
remulcl |
|- ( ( T e. RR /\ R e. RR ) -> ( T x. R ) e. RR ) |
| 135 |
5 134
|
sylan |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( T x. R ) e. RR ) |
| 136 |
|
remulcl |
|- ( ( ( 1 - T ) e. RR /\ R e. RR ) -> ( ( 1 - T ) x. R ) e. RR ) |
| 137 |
19 136
|
sylan |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( ( 1 - T ) x. R ) e. RR ) |
| 138 |
|
ltleadd |
|- ( ( ( ( abs ` ( T x. ( P - A ) ) ) e. RR /\ ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) e. RR ) /\ ( ( T x. R ) e. RR /\ ( ( 1 - T ) x. R ) e. RR ) ) -> ( ( ( abs ` ( T x. ( P - A ) ) ) < ( T x. R ) /\ ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) <_ ( ( 1 - T ) x. R ) ) -> ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) < ( ( T x. R ) + ( ( 1 - T ) x. R ) ) ) ) |
| 139 |
132 133 135 137 138
|
syl22anc |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( ( ( abs ` ( T x. ( P - A ) ) ) < ( T x. R ) /\ ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) <_ ( ( 1 - T ) x. R ) ) -> ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) < ( ( T x. R ) + ( ( 1 - T ) x. R ) ) ) ) |
| 140 |
139
|
adantr |
|- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> ( ( ( abs ` ( T x. ( P - A ) ) ) < ( T x. R ) /\ ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) <_ ( ( 1 - T ) x. R ) ) -> ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) < ( ( T x. R ) + ( ( 1 - T ) x. R ) ) ) ) |
| 141 |
109 131 140
|
mp2and |
|- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) < ( ( T x. R ) + ( ( 1 - T ) x. R ) ) ) |
| 142 |
40
|
oveq1d |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T + ( 1 - T ) ) x. R ) = ( 1 x. R ) ) |
| 143 |
142
|
adantr |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( ( T + ( 1 - T ) ) x. R ) = ( 1 x. R ) ) |
| 144 |
6
|
adantr |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> T e. CC ) |
| 145 |
20
|
adantr |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( 1 - T ) e. CC ) |
| 146 |
61
|
recnd |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> R e. CC ) |
| 147 |
144 145 146
|
adddird |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( ( T + ( 1 - T ) ) x. R ) = ( ( T x. R ) + ( ( 1 - T ) x. R ) ) ) |
| 148 |
146
|
mullidd |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( 1 x. R ) = R ) |
| 149 |
143 147 148
|
3eqtr3d |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( ( T x. R ) + ( ( 1 - T ) x. R ) ) = R ) |
| 150 |
149
|
adantr |
|- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> ( ( T x. R ) + ( ( 1 - T ) x. R ) ) = R ) |
| 151 |
141 150
|
breqtrd |
|- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) < R ) |
| 152 |
86 151
|
pm2.61dane |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) < R ) |
| 153 |
56 60 61 63 152
|
lelttrd |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( abs ` ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) ) < R ) |
| 154 |
55
|
adantr |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R = +oo ) -> ( abs ` ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) ) e. RR ) |
| 155 |
154
|
ltpnfd |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R = +oo ) -> ( abs ` ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) ) < +oo ) |
| 156 |
|
simpr |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R = +oo ) -> R = +oo ) |
| 157 |
155 156
|
breqtrrd |
|- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R = +oo ) -> ( abs ` ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) ) < R ) |
| 158 |
|
0xr |
|- 0 e. RR* |
| 159 |
158
|
a1i |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> 0 e. RR* ) |
| 160 |
98
|
rexrd |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( P - A ) ) e. RR* ) |
| 161 |
50
|
absge0d |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> 0 <_ ( abs ` ( P - A ) ) ) |
| 162 |
159 160 11 161 96
|
xrlelttrd |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> 0 < R ) |
| 163 |
159 11 162
|
xrltled |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> 0 <_ R ) |
| 164 |
|
ge0nemnf |
|- ( ( R e. RR* /\ 0 <_ R ) -> R =/= -oo ) |
| 165 |
11 163 164
|
syl2anc |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> R =/= -oo ) |
| 166 |
11 165
|
jca |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( R e. RR* /\ R =/= -oo ) ) |
| 167 |
|
xrnemnf |
|- ( ( R e. RR* /\ R =/= -oo ) <-> ( R e. RR \/ R = +oo ) ) |
| 168 |
166 167
|
sylib |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( R e. RR \/ R = +oo ) ) |
| 169 |
153 157 168
|
mpjaodan |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) ) < R ) |
| 170 |
49 169
|
eqbrtrd |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( P ( abs o. - ) ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < R ) |
| 171 |
|
elbl |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ P e. CC /\ R e. RR* ) -> ( ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. ( P ( ball ` ( abs o. - ) ) R ) <-> ( ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. CC /\ ( P ( abs o. - ) ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < R ) ) ) |
| 172 |
9 10 11 171
|
mp3an2i |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. ( P ( ball ` ( abs o. - ) ) R ) <-> ( ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. CC /\ ( P ( abs o. - ) ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < R ) ) ) |
| 173 |
28 170 172
|
mpbir2and |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. ( P ( ball ` ( abs o. - ) ) R ) ) |
| 174 |
173 1
|
eleqtrrdi |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. S ) |