Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> D e. ( *Met ` X ) ) |
2 |
|
simprl |
|- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> B e. ran ( ball ` D ) ) |
3 |
|
simplr |
|- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> P e. ( B i^i C ) ) |
4 |
3
|
elin1d |
|- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> P e. B ) |
5 |
|
blss |
|- ( ( D e. ( *Met ` X ) /\ B e. ran ( ball ` D ) /\ P e. B ) -> E. y e. RR+ ( P ( ball ` D ) y ) C_ B ) |
6 |
1 2 4 5
|
syl3anc |
|- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> E. y e. RR+ ( P ( ball ` D ) y ) C_ B ) |
7 |
|
simprr |
|- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> C e. ran ( ball ` D ) ) |
8 |
3
|
elin2d |
|- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> P e. C ) |
9 |
|
blss |
|- ( ( D e. ( *Met ` X ) /\ C e. ran ( ball ` D ) /\ P e. C ) -> E. z e. RR+ ( P ( ball ` D ) z ) C_ C ) |
10 |
1 7 8 9
|
syl3anc |
|- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> E. z e. RR+ ( P ( ball ` D ) z ) C_ C ) |
11 |
|
reeanv |
|- ( E. y e. RR+ E. z e. RR+ ( ( P ( ball ` D ) y ) C_ B /\ ( P ( ball ` D ) z ) C_ C ) <-> ( E. y e. RR+ ( P ( ball ` D ) y ) C_ B /\ E. z e. RR+ ( P ( ball ` D ) z ) C_ C ) ) |
12 |
|
ss2in |
|- ( ( ( P ( ball ` D ) y ) C_ B /\ ( P ( ball ` D ) z ) C_ C ) -> ( ( P ( ball ` D ) y ) i^i ( P ( ball ` D ) z ) ) C_ ( B i^i C ) ) |
13 |
|
inss1 |
|- ( B i^i C ) C_ B |
14 |
|
blf |
|- ( D e. ( *Met ` X ) -> ( ball ` D ) : ( X X. RR* ) --> ~P X ) |
15 |
|
frn |
|- ( ( ball ` D ) : ( X X. RR* ) --> ~P X -> ran ( ball ` D ) C_ ~P X ) |
16 |
1 14 15
|
3syl |
|- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> ran ( ball ` D ) C_ ~P X ) |
17 |
16 2
|
sseldd |
|- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> B e. ~P X ) |
18 |
17
|
elpwid |
|- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> B C_ X ) |
19 |
13 18
|
sstrid |
|- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> ( B i^i C ) C_ X ) |
20 |
19 3
|
sseldd |
|- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> P e. X ) |
21 |
1 20
|
jca |
|- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> ( D e. ( *Met ` X ) /\ P e. X ) ) |
22 |
|
rpxr |
|- ( y e. RR+ -> y e. RR* ) |
23 |
|
rpxr |
|- ( z e. RR+ -> z e. RR* ) |
24 |
22 23
|
anim12i |
|- ( ( y e. RR+ /\ z e. RR+ ) -> ( y e. RR* /\ z e. RR* ) ) |
25 |
|
blin |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( y e. RR* /\ z e. RR* ) ) -> ( ( P ( ball ` D ) y ) i^i ( P ( ball ` D ) z ) ) = ( P ( ball ` D ) if ( y <_ z , y , z ) ) ) |
26 |
21 24 25
|
syl2an |
|- ( ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) /\ ( y e. RR+ /\ z e. RR+ ) ) -> ( ( P ( ball ` D ) y ) i^i ( P ( ball ` D ) z ) ) = ( P ( ball ` D ) if ( y <_ z , y , z ) ) ) |
27 |
26
|
sseq1d |
|- ( ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) /\ ( y e. RR+ /\ z e. RR+ ) ) -> ( ( ( P ( ball ` D ) y ) i^i ( P ( ball ` D ) z ) ) C_ ( B i^i C ) <-> ( P ( ball ` D ) if ( y <_ z , y , z ) ) C_ ( B i^i C ) ) ) |
28 |
|
ifcl |
|- ( ( y e. RR+ /\ z e. RR+ ) -> if ( y <_ z , y , z ) e. RR+ ) |
29 |
|
oveq2 |
|- ( x = if ( y <_ z , y , z ) -> ( P ( ball ` D ) x ) = ( P ( ball ` D ) if ( y <_ z , y , z ) ) ) |
30 |
29
|
sseq1d |
|- ( x = if ( y <_ z , y , z ) -> ( ( P ( ball ` D ) x ) C_ ( B i^i C ) <-> ( P ( ball ` D ) if ( y <_ z , y , z ) ) C_ ( B i^i C ) ) ) |
31 |
30
|
rspcev |
|- ( ( if ( y <_ z , y , z ) e. RR+ /\ ( P ( ball ` D ) if ( y <_ z , y , z ) ) C_ ( B i^i C ) ) -> E. x e. RR+ ( P ( ball ` D ) x ) C_ ( B i^i C ) ) |
32 |
31
|
ex |
|- ( if ( y <_ z , y , z ) e. RR+ -> ( ( P ( ball ` D ) if ( y <_ z , y , z ) ) C_ ( B i^i C ) -> E. x e. RR+ ( P ( ball ` D ) x ) C_ ( B i^i C ) ) ) |
33 |
28 32
|
syl |
|- ( ( y e. RR+ /\ z e. RR+ ) -> ( ( P ( ball ` D ) if ( y <_ z , y , z ) ) C_ ( B i^i C ) -> E. x e. RR+ ( P ( ball ` D ) x ) C_ ( B i^i C ) ) ) |
34 |
33
|
adantl |
|- ( ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) /\ ( y e. RR+ /\ z e. RR+ ) ) -> ( ( P ( ball ` D ) if ( y <_ z , y , z ) ) C_ ( B i^i C ) -> E. x e. RR+ ( P ( ball ` D ) x ) C_ ( B i^i C ) ) ) |
35 |
27 34
|
sylbid |
|- ( ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) /\ ( y e. RR+ /\ z e. RR+ ) ) -> ( ( ( P ( ball ` D ) y ) i^i ( P ( ball ` D ) z ) ) C_ ( B i^i C ) -> E. x e. RR+ ( P ( ball ` D ) x ) C_ ( B i^i C ) ) ) |
36 |
12 35
|
syl5 |
|- ( ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) /\ ( y e. RR+ /\ z e. RR+ ) ) -> ( ( ( P ( ball ` D ) y ) C_ B /\ ( P ( ball ` D ) z ) C_ C ) -> E. x e. RR+ ( P ( ball ` D ) x ) C_ ( B i^i C ) ) ) |
37 |
36
|
rexlimdvva |
|- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> ( E. y e. RR+ E. z e. RR+ ( ( P ( ball ` D ) y ) C_ B /\ ( P ( ball ` D ) z ) C_ C ) -> E. x e. RR+ ( P ( ball ` D ) x ) C_ ( B i^i C ) ) ) |
38 |
11 37
|
syl5bir |
|- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> ( ( E. y e. RR+ ( P ( ball ` D ) y ) C_ B /\ E. z e. RR+ ( P ( ball ` D ) z ) C_ C ) -> E. x e. RR+ ( P ( ball ` D ) x ) C_ ( B i^i C ) ) ) |
39 |
6 10 38
|
mp2and |
|- ( ( ( D e. ( *Met ` X ) /\ P e. ( B i^i C ) ) /\ ( B e. ran ( ball ` D ) /\ C e. ran ( ball ` D ) ) ) -> E. x e. RR+ ( P ( ball ` D ) x ) C_ ( B i^i C ) ) |