Description: A ball is not empty. (Contributed by NM, 6-Oct-2007) (Revised by Mario Carneiro, 12-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | bln0 | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR+ ) -> ( P ( ball ` D ) R ) =/= (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blcntr | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR+ ) -> P e. ( P ( ball ` D ) R ) ) |
|
2 | 1 | ne0d | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR+ ) -> ( P ( ball ` D ) R ) =/= (/) ) |