Metamath Proof Explorer


Theorem blocn

Description: A linear operator is continuous iff it is bounded. Theorem 2.7-9(a) of Kreyszig p. 97. (Contributed by NM, 25-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses blocn.8
|- C = ( IndMet ` U )
blocn.d
|- D = ( IndMet ` W )
blocn.j
|- J = ( MetOpen ` C )
blocn.k
|- K = ( MetOpen ` D )
blocn.5
|- B = ( U BLnOp W )
blocn.u
|- U e. NrmCVec
blocn.w
|- W e. NrmCVec
blocn.4
|- L = ( U LnOp W )
Assertion blocn
|- ( T e. L -> ( T e. ( J Cn K ) <-> T e. B ) )

Proof

Step Hyp Ref Expression
1 blocn.8
 |-  C = ( IndMet ` U )
2 blocn.d
 |-  D = ( IndMet ` W )
3 blocn.j
 |-  J = ( MetOpen ` C )
4 blocn.k
 |-  K = ( MetOpen ` D )
5 blocn.5
 |-  B = ( U BLnOp W )
6 blocn.u
 |-  U e. NrmCVec
7 blocn.w
 |-  W e. NrmCVec
8 blocn.4
 |-  L = ( U LnOp W )
9 eleq1
 |-  ( T = if ( T e. L , T , ( U 0op W ) ) -> ( T e. ( J Cn K ) <-> if ( T e. L , T , ( U 0op W ) ) e. ( J Cn K ) ) )
10 eleq1
 |-  ( T = if ( T e. L , T , ( U 0op W ) ) -> ( T e. B <-> if ( T e. L , T , ( U 0op W ) ) e. B ) )
11 9 10 bibi12d
 |-  ( T = if ( T e. L , T , ( U 0op W ) ) -> ( ( T e. ( J Cn K ) <-> T e. B ) <-> ( if ( T e. L , T , ( U 0op W ) ) e. ( J Cn K ) <-> if ( T e. L , T , ( U 0op W ) ) e. B ) ) )
12 eqid
 |-  ( U 0op W ) = ( U 0op W )
13 12 8 0lno
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( U 0op W ) e. L )
14 6 7 13 mp2an
 |-  ( U 0op W ) e. L
15 14 elimel
 |-  if ( T e. L , T , ( U 0op W ) ) e. L
16 1 2 3 4 8 5 6 7 15 blocni
 |-  ( if ( T e. L , T , ( U 0op W ) ) e. ( J Cn K ) <-> if ( T e. L , T , ( U 0op W ) ) e. B )
17 11 16 dedth
 |-  ( T e. L -> ( T e. ( J Cn K ) <-> T e. B ) )