| Step |
Hyp |
Ref |
Expression |
| 1 |
|
blocn.8 |
|- C = ( IndMet ` U ) |
| 2 |
|
blocn.d |
|- D = ( IndMet ` W ) |
| 3 |
|
blocn.j |
|- J = ( MetOpen ` C ) |
| 4 |
|
blocn.k |
|- K = ( MetOpen ` D ) |
| 5 |
|
blocn.5 |
|- B = ( U BLnOp W ) |
| 6 |
|
blocn.u |
|- U e. NrmCVec |
| 7 |
|
blocn.w |
|- W e. NrmCVec |
| 8 |
|
eqid |
|- ( U LnOp W ) = ( U LnOp W ) |
| 9 |
8 5
|
bloln |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> T e. ( U LnOp W ) ) |
| 10 |
6 7 9
|
mp3an12 |
|- ( T e. B -> T e. ( U LnOp W ) ) |
| 11 |
1 2 3 4 5 6 7 8
|
blocn |
|- ( T e. ( U LnOp W ) -> ( T e. ( J Cn K ) <-> T e. B ) ) |
| 12 |
11
|
biimprd |
|- ( T e. ( U LnOp W ) -> ( T e. B -> T e. ( J Cn K ) ) ) |
| 13 |
10 12
|
mpcom |
|- ( T e. B -> T e. ( J Cn K ) ) |