Description: A bounded operator is an operator. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | blof.1 | |- X = ( BaseSet ` U ) |
|
blof.2 | |- Y = ( BaseSet ` W ) |
||
blof.5 | |- B = ( U BLnOp W ) |
||
Assertion | blof | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> T : X --> Y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blof.1 | |- X = ( BaseSet ` U ) |
|
2 | blof.2 | |- Y = ( BaseSet ` W ) |
|
3 | blof.5 | |- B = ( U BLnOp W ) |
|
4 | eqid | |- ( U LnOp W ) = ( U LnOp W ) |
|
5 | 4 3 | bloln | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> T e. ( U LnOp W ) ) |
6 | 1 2 4 | lnof | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. ( U LnOp W ) ) -> T : X --> Y ) |
7 | 5 6 | syld3an3 | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> T : X --> Y ) |