Metamath Proof Explorer


Theorem bloln

Description: A bounded operator is a linear operator. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses bloln.4
|- L = ( U LnOp W )
bloln.5
|- B = ( U BLnOp W )
Assertion bloln
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> T e. L )

Proof

Step Hyp Ref Expression
1 bloln.4
 |-  L = ( U LnOp W )
2 bloln.5
 |-  B = ( U BLnOp W )
3 eqid
 |-  ( U normOpOLD W ) = ( U normOpOLD W )
4 3 1 2 isblo
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( T e. B <-> ( T e. L /\ ( ( U normOpOLD W ) ` T ) < +oo ) ) )
5 4 simprbda
 |-  ( ( ( U e. NrmCVec /\ W e. NrmCVec ) /\ T e. B ) -> T e. L )
6 5 3impa
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> T e. L )