Description: A bounded operator is a linear operator. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bloln.4 | |- L = ( U LnOp W ) |
|
bloln.5 | |- B = ( U BLnOp W ) |
||
Assertion | bloln | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> T e. L ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bloln.4 | |- L = ( U LnOp W ) |
|
2 | bloln.5 | |- B = ( U BLnOp W ) |
|
3 | eqid | |- ( U normOpOLD W ) = ( U normOpOLD W ) |
|
4 | 3 1 2 | isblo | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( T e. B <-> ( T e. L /\ ( ( U normOpOLD W ) ` T ) < +oo ) ) ) |
5 | 4 | simprbda | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec ) /\ T e. B ) -> T e. L ) |
6 | 5 | 3impa | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> T e. L ) |