Description: A ball of a metric space is an open set. (Contributed by NM, 9-Mar-2007) (Revised by Mario Carneiro, 12-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mopni.1 | |- J = ( MetOpen ` D ) |
|
| Assertion | blopn | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( P ( ball ` D ) R ) e. J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopni.1 | |- J = ( MetOpen ` D ) |
|
| 2 | 1 | blssopn | |- ( D e. ( *Met ` X ) -> ran ( ball ` D ) C_ J ) |
| 3 | 2 | 3ad2ant1 | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ran ( ball ` D ) C_ J ) |
| 4 | blelrn | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( P ( ball ` D ) R ) e. ran ( ball ` D ) ) |
|
| 5 | 3 4 | sseldd | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( P ( ball ` D ) R ) e. J ) |