Description: A ball of a metric space is an open set. (Contributed by NM, 9-Mar-2007) (Revised by Mario Carneiro, 12-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mopni.1 | |- J = ( MetOpen ` D ) |
|
Assertion | blopn | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( P ( ball ` D ) R ) e. J ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mopni.1 | |- J = ( MetOpen ` D ) |
|
2 | 1 | blssopn | |- ( D e. ( *Met ` X ) -> ran ( ball ` D ) C_ J ) |
3 | 2 | 3ad2ant1 | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ran ( ball ` D ) C_ J ) |
4 | blelrn | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( P ( ball ` D ) R ) e. ran ( ball ` D ) ) |
|
5 | 3 4 | sseldd | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( P ( ball ` D ) R ) e. J ) |