Metamath Proof Explorer


Theorem blopn

Description: A ball of a metric space is an open set. (Contributed by NM, 9-Mar-2007) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopni.1
|- J = ( MetOpen ` D )
Assertion blopn
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( P ( ball ` D ) R ) e. J )

Proof

Step Hyp Ref Expression
1 mopni.1
 |-  J = ( MetOpen ` D )
2 1 blssopn
 |-  ( D e. ( *Met ` X ) -> ran ( ball ` D ) C_ J )
3 2 3ad2ant1
 |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ran ( ball ` D ) C_ J )
4 blelrn
 |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( P ( ball ` D ) R ) e. ran ( ball ` D ) )
5 3 4 sseldd
 |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( P ( ball ` D ) R ) e. J )