| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bloval.3 |  |-  N = ( U normOpOLD W ) | 
						
							| 2 |  | bloval.4 |  |-  L = ( U LnOp W ) | 
						
							| 3 |  | bloval.5 |  |-  B = ( U BLnOp W ) | 
						
							| 4 |  | oveq1 |  |-  ( u = U -> ( u LnOp w ) = ( U LnOp w ) ) | 
						
							| 5 |  | oveq1 |  |-  ( u = U -> ( u normOpOLD w ) = ( U normOpOLD w ) ) | 
						
							| 6 | 5 | fveq1d |  |-  ( u = U -> ( ( u normOpOLD w ) ` t ) = ( ( U normOpOLD w ) ` t ) ) | 
						
							| 7 | 6 | breq1d |  |-  ( u = U -> ( ( ( u normOpOLD w ) ` t ) < +oo <-> ( ( U normOpOLD w ) ` t ) < +oo ) ) | 
						
							| 8 | 4 7 | rabeqbidv |  |-  ( u = U -> { t e. ( u LnOp w ) | ( ( u normOpOLD w ) ` t ) < +oo } = { t e. ( U LnOp w ) | ( ( U normOpOLD w ) ` t ) < +oo } ) | 
						
							| 9 |  | oveq2 |  |-  ( w = W -> ( U LnOp w ) = ( U LnOp W ) ) | 
						
							| 10 | 9 2 | eqtr4di |  |-  ( w = W -> ( U LnOp w ) = L ) | 
						
							| 11 |  | oveq2 |  |-  ( w = W -> ( U normOpOLD w ) = ( U normOpOLD W ) ) | 
						
							| 12 | 11 1 | eqtr4di |  |-  ( w = W -> ( U normOpOLD w ) = N ) | 
						
							| 13 | 12 | fveq1d |  |-  ( w = W -> ( ( U normOpOLD w ) ` t ) = ( N ` t ) ) | 
						
							| 14 | 13 | breq1d |  |-  ( w = W -> ( ( ( U normOpOLD w ) ` t ) < +oo <-> ( N ` t ) < +oo ) ) | 
						
							| 15 | 10 14 | rabeqbidv |  |-  ( w = W -> { t e. ( U LnOp w ) | ( ( U normOpOLD w ) ` t ) < +oo } = { t e. L | ( N ` t ) < +oo } ) | 
						
							| 16 |  | df-blo |  |-  BLnOp = ( u e. NrmCVec , w e. NrmCVec |-> { t e. ( u LnOp w ) | ( ( u normOpOLD w ) ` t ) < +oo } ) | 
						
							| 17 | 2 | ovexi |  |-  L e. _V | 
						
							| 18 | 17 | rabex |  |-  { t e. L | ( N ` t ) < +oo } e. _V | 
						
							| 19 | 8 15 16 18 | ovmpo |  |-  ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( U BLnOp W ) = { t e. L | ( N ` t ) < +oo } ) | 
						
							| 20 | 3 19 | eqtrid |  |-  ( ( U e. NrmCVec /\ W e. NrmCVec ) -> B = { t e. L | ( N ` t ) < +oo } ) |