Step |
Hyp |
Ref |
Expression |
1 |
|
bloval.3 |
|- N = ( U normOpOLD W ) |
2 |
|
bloval.4 |
|- L = ( U LnOp W ) |
3 |
|
bloval.5 |
|- B = ( U BLnOp W ) |
4 |
|
oveq1 |
|- ( u = U -> ( u LnOp w ) = ( U LnOp w ) ) |
5 |
|
oveq1 |
|- ( u = U -> ( u normOpOLD w ) = ( U normOpOLD w ) ) |
6 |
5
|
fveq1d |
|- ( u = U -> ( ( u normOpOLD w ) ` t ) = ( ( U normOpOLD w ) ` t ) ) |
7 |
6
|
breq1d |
|- ( u = U -> ( ( ( u normOpOLD w ) ` t ) < +oo <-> ( ( U normOpOLD w ) ` t ) < +oo ) ) |
8 |
4 7
|
rabeqbidv |
|- ( u = U -> { t e. ( u LnOp w ) | ( ( u normOpOLD w ) ` t ) < +oo } = { t e. ( U LnOp w ) | ( ( U normOpOLD w ) ` t ) < +oo } ) |
9 |
|
oveq2 |
|- ( w = W -> ( U LnOp w ) = ( U LnOp W ) ) |
10 |
9 2
|
eqtr4di |
|- ( w = W -> ( U LnOp w ) = L ) |
11 |
|
oveq2 |
|- ( w = W -> ( U normOpOLD w ) = ( U normOpOLD W ) ) |
12 |
11 1
|
eqtr4di |
|- ( w = W -> ( U normOpOLD w ) = N ) |
13 |
12
|
fveq1d |
|- ( w = W -> ( ( U normOpOLD w ) ` t ) = ( N ` t ) ) |
14 |
13
|
breq1d |
|- ( w = W -> ( ( ( U normOpOLD w ) ` t ) < +oo <-> ( N ` t ) < +oo ) ) |
15 |
10 14
|
rabeqbidv |
|- ( w = W -> { t e. ( U LnOp w ) | ( ( U normOpOLD w ) ` t ) < +oo } = { t e. L | ( N ` t ) < +oo } ) |
16 |
|
df-blo |
|- BLnOp = ( u e. NrmCVec , w e. NrmCVec |-> { t e. ( u LnOp w ) | ( ( u normOpOLD w ) ` t ) < +oo } ) |
17 |
2
|
ovexi |
|- L e. _V |
18 |
17
|
rabex |
|- { t e. L | ( N ` t ) < +oo } e. _V |
19 |
8 15 16 18
|
ovmpo |
|- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( U BLnOp W ) = { t e. L | ( N ` t ) < +oo } ) |
20 |
3 19
|
eqtrid |
|- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> B = { t e. L | ( N ` t ) < +oo } ) |