Metamath Proof Explorer


Theorem bloval

Description: The class of bounded linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses bloval.3
|- N = ( U normOpOLD W )
bloval.4
|- L = ( U LnOp W )
bloval.5
|- B = ( U BLnOp W )
Assertion bloval
|- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> B = { t e. L | ( N ` t ) < +oo } )

Proof

Step Hyp Ref Expression
1 bloval.3
 |-  N = ( U normOpOLD W )
2 bloval.4
 |-  L = ( U LnOp W )
3 bloval.5
 |-  B = ( U BLnOp W )
4 oveq1
 |-  ( u = U -> ( u LnOp w ) = ( U LnOp w ) )
5 oveq1
 |-  ( u = U -> ( u normOpOLD w ) = ( U normOpOLD w ) )
6 5 fveq1d
 |-  ( u = U -> ( ( u normOpOLD w ) ` t ) = ( ( U normOpOLD w ) ` t ) )
7 6 breq1d
 |-  ( u = U -> ( ( ( u normOpOLD w ) ` t ) < +oo <-> ( ( U normOpOLD w ) ` t ) < +oo ) )
8 4 7 rabeqbidv
 |-  ( u = U -> { t e. ( u LnOp w ) | ( ( u normOpOLD w ) ` t ) < +oo } = { t e. ( U LnOp w ) | ( ( U normOpOLD w ) ` t ) < +oo } )
9 oveq2
 |-  ( w = W -> ( U LnOp w ) = ( U LnOp W ) )
10 9 2 eqtr4di
 |-  ( w = W -> ( U LnOp w ) = L )
11 oveq2
 |-  ( w = W -> ( U normOpOLD w ) = ( U normOpOLD W ) )
12 11 1 eqtr4di
 |-  ( w = W -> ( U normOpOLD w ) = N )
13 12 fveq1d
 |-  ( w = W -> ( ( U normOpOLD w ) ` t ) = ( N ` t ) )
14 13 breq1d
 |-  ( w = W -> ( ( ( U normOpOLD w ) ` t ) < +oo <-> ( N ` t ) < +oo ) )
15 10 14 rabeqbidv
 |-  ( w = W -> { t e. ( U LnOp w ) | ( ( U normOpOLD w ) ` t ) < +oo } = { t e. L | ( N ` t ) < +oo } )
16 df-blo
 |-  BLnOp = ( u e. NrmCVec , w e. NrmCVec |-> { t e. ( u LnOp w ) | ( ( u normOpOLD w ) ` t ) < +oo } )
17 2 ovexi
 |-  L e. _V
18 17 rabex
 |-  { t e. L | ( N ` t ) < +oo } e. _V
19 8 15 16 18 ovmpo
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( U BLnOp W ) = { t e. L | ( N ` t ) < +oo } )
20 3 19 syl5eq
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec ) -> B = { t e. L | ( N ` t ) < +oo } )