Step |
Hyp |
Ref |
Expression |
1 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
2 |
|
xblpnf |
|- ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( x e. ( P ( ball ` D ) +oo ) <-> ( x e. X /\ ( P D x ) e. RR ) ) ) |
3 |
1 2
|
sylan |
|- ( ( D e. ( Met ` X ) /\ P e. X ) -> ( x e. ( P ( ball ` D ) +oo ) <-> ( x e. X /\ ( P D x ) e. RR ) ) ) |
4 |
|
metcl |
|- ( ( D e. ( Met ` X ) /\ P e. X /\ x e. X ) -> ( P D x ) e. RR ) |
5 |
4
|
3expia |
|- ( ( D e. ( Met ` X ) /\ P e. X ) -> ( x e. X -> ( P D x ) e. RR ) ) |
6 |
5
|
pm4.71d |
|- ( ( D e. ( Met ` X ) /\ P e. X ) -> ( x e. X <-> ( x e. X /\ ( P D x ) e. RR ) ) ) |
7 |
3 6
|
bitr4d |
|- ( ( D e. ( Met ` X ) /\ P e. X ) -> ( x e. ( P ( ball ` D ) +oo ) <-> x e. X ) ) |
8 |
7
|
eqrdv |
|- ( ( D e. ( Met ` X ) /\ P e. X ) -> ( P ( ball ` D ) +oo ) = X ) |