| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( `' D " RR ) = ( `' D " RR ) | 
						
							| 2 | 1 | xmeter |  |-  ( D e. ( *Met ` X ) -> ( `' D " RR ) Er X ) | 
						
							| 3 | 2 | 3ad2ant1 |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> ( `' D " RR ) Er X ) | 
						
							| 4 |  | simp3 |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> A e. ( P ( ball ` D ) +oo ) ) | 
						
							| 5 | 1 | xmetec |  |-  ( ( D e. ( *Met ` X ) /\ P e. X ) -> [ P ] ( `' D " RR ) = ( P ( ball ` D ) +oo ) ) | 
						
							| 6 | 5 | 3adant3 |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> [ P ] ( `' D " RR ) = ( P ( ball ` D ) +oo ) ) | 
						
							| 7 | 4 6 | eleqtrrd |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> A e. [ P ] ( `' D " RR ) ) | 
						
							| 8 |  | elecg |  |-  ( ( A e. ( P ( ball ` D ) +oo ) /\ P e. X ) -> ( A e. [ P ] ( `' D " RR ) <-> P ( `' D " RR ) A ) ) | 
						
							| 9 | 8 | ancoms |  |-  ( ( P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> ( A e. [ P ] ( `' D " RR ) <-> P ( `' D " RR ) A ) ) | 
						
							| 10 | 9 | 3adant1 |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> ( A e. [ P ] ( `' D " RR ) <-> P ( `' D " RR ) A ) ) | 
						
							| 11 | 7 10 | mpbid |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> P ( `' D " RR ) A ) | 
						
							| 12 | 3 11 | erthi |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> [ P ] ( `' D " RR ) = [ A ] ( `' D " RR ) ) | 
						
							| 13 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 14 |  | blssm |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ +oo e. RR* ) -> ( P ( ball ` D ) +oo ) C_ X ) | 
						
							| 15 | 13 14 | mp3an3 |  |-  ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( P ( ball ` D ) +oo ) C_ X ) | 
						
							| 16 | 15 | sselda |  |-  ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ A e. ( P ( ball ` D ) +oo ) ) -> A e. X ) | 
						
							| 17 | 1 | xmetec |  |-  ( ( D e. ( *Met ` X ) /\ A e. X ) -> [ A ] ( `' D " RR ) = ( A ( ball ` D ) +oo ) ) | 
						
							| 18 | 17 | adantlr |  |-  ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ A e. X ) -> [ A ] ( `' D " RR ) = ( A ( ball ` D ) +oo ) ) | 
						
							| 19 | 16 18 | syldan |  |-  ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ A e. ( P ( ball ` D ) +oo ) ) -> [ A ] ( `' D " RR ) = ( A ( ball ` D ) +oo ) ) | 
						
							| 20 | 19 | 3impa |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> [ A ] ( `' D " RR ) = ( A ( ball ` D ) +oo ) ) | 
						
							| 21 | 12 6 20 | 3eqtr3d |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> ( P ( ball ` D ) +oo ) = ( A ( ball ` D ) +oo ) ) |