| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xmeter.1 |  |-  .~ = ( `' D " RR ) | 
						
							| 2 |  | pnfge |  |-  ( S e. RR* -> S <_ +oo ) | 
						
							| 3 | 2 | adantl |  |-  ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ S e. RR* ) -> S <_ +oo ) | 
						
							| 4 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 5 |  | ssbl |  |-  ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( S e. RR* /\ +oo e. RR* ) /\ S <_ +oo ) -> ( P ( ball ` D ) S ) C_ ( P ( ball ` D ) +oo ) ) | 
						
							| 6 | 5 | 3expia |  |-  ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( S e. RR* /\ +oo e. RR* ) ) -> ( S <_ +oo -> ( P ( ball ` D ) S ) C_ ( P ( ball ` D ) +oo ) ) ) | 
						
							| 7 | 4 6 | mpanr2 |  |-  ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ S e. RR* ) -> ( S <_ +oo -> ( P ( ball ` D ) S ) C_ ( P ( ball ` D ) +oo ) ) ) | 
						
							| 8 | 3 7 | mpd |  |-  ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ S e. RR* ) -> ( P ( ball ` D ) S ) C_ ( P ( ball ` D ) +oo ) ) | 
						
							| 9 | 8 | 3impa |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ S e. RR* ) -> ( P ( ball ` D ) S ) C_ ( P ( ball ` D ) +oo ) ) | 
						
							| 10 | 1 | xmetec |  |-  ( ( D e. ( *Met ` X ) /\ P e. X ) -> [ P ] .~ = ( P ( ball ` D ) +oo ) ) | 
						
							| 11 | 10 | 3adant3 |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ S e. RR* ) -> [ P ] .~ = ( P ( ball ` D ) +oo ) ) | 
						
							| 12 | 9 11 | sseqtrrd |  |-  ( ( D e. ( *Met ` X ) /\ P e. X /\ S e. RR* ) -> ( P ( ball ` D ) S ) C_ [ P ] .~ ) |