Step |
Hyp |
Ref |
Expression |
1 |
|
xmeter.1 |
|- .~ = ( `' D " RR ) |
2 |
|
pnfge |
|- ( S e. RR* -> S <_ +oo ) |
3 |
2
|
adantl |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ S e. RR* ) -> S <_ +oo ) |
4 |
|
pnfxr |
|- +oo e. RR* |
5 |
|
ssbl |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( S e. RR* /\ +oo e. RR* ) /\ S <_ +oo ) -> ( P ( ball ` D ) S ) C_ ( P ( ball ` D ) +oo ) ) |
6 |
5
|
3expia |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( S e. RR* /\ +oo e. RR* ) ) -> ( S <_ +oo -> ( P ( ball ` D ) S ) C_ ( P ( ball ` D ) +oo ) ) ) |
7 |
4 6
|
mpanr2 |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ S e. RR* ) -> ( S <_ +oo -> ( P ( ball ` D ) S ) C_ ( P ( ball ` D ) +oo ) ) ) |
8 |
3 7
|
mpd |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ S e. RR* ) -> ( P ( ball ` D ) S ) C_ ( P ( ball ` D ) +oo ) ) |
9 |
8
|
3impa |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ S e. RR* ) -> ( P ( ball ` D ) S ) C_ ( P ( ball ` D ) +oo ) ) |
10 |
1
|
xmetec |
|- ( ( D e. ( *Met ` X ) /\ P e. X ) -> [ P ] .~ = ( P ( ball ` D ) +oo ) ) |
11 |
10
|
3adant3 |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ S e. RR* ) -> [ P ] .~ = ( P ( ball ` D ) +oo ) ) |
12 |
9 11
|
sseqtrrd |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ S e. RR* ) -> ( P ( ball ` D ) S ) C_ [ P ] .~ ) |