| Step | Hyp | Ref | Expression | 
						
							| 1 |  | blssps |  |-  ( ( D e. ( PsMet ` X ) /\ x e. ran ( ball ` D ) /\ P e. x ) -> E. r e. RR+ ( P ( ball ` D ) r ) C_ x ) | 
						
							| 2 |  | sstr |  |-  ( ( ( P ( ball ` D ) r ) C_ x /\ x C_ A ) -> ( P ( ball ` D ) r ) C_ A ) | 
						
							| 3 | 2 | expcom |  |-  ( x C_ A -> ( ( P ( ball ` D ) r ) C_ x -> ( P ( ball ` D ) r ) C_ A ) ) | 
						
							| 4 | 3 | reximdv |  |-  ( x C_ A -> ( E. r e. RR+ ( P ( ball ` D ) r ) C_ x -> E. r e. RR+ ( P ( ball ` D ) r ) C_ A ) ) | 
						
							| 5 | 1 4 | syl5com |  |-  ( ( D e. ( PsMet ` X ) /\ x e. ran ( ball ` D ) /\ P e. x ) -> ( x C_ A -> E. r e. RR+ ( P ( ball ` D ) r ) C_ A ) ) | 
						
							| 6 | 5 | 3expa |  |-  ( ( ( D e. ( PsMet ` X ) /\ x e. ran ( ball ` D ) ) /\ P e. x ) -> ( x C_ A -> E. r e. RR+ ( P ( ball ` D ) r ) C_ A ) ) | 
						
							| 7 | 6 | expimpd |  |-  ( ( D e. ( PsMet ` X ) /\ x e. ran ( ball ` D ) ) -> ( ( P e. x /\ x C_ A ) -> E. r e. RR+ ( P ( ball ` D ) r ) C_ A ) ) | 
						
							| 8 | 7 | adantlr |  |-  ( ( ( D e. ( PsMet ` X ) /\ P e. X ) /\ x e. ran ( ball ` D ) ) -> ( ( P e. x /\ x C_ A ) -> E. r e. RR+ ( P ( ball ` D ) r ) C_ A ) ) | 
						
							| 9 | 8 | rexlimdva |  |-  ( ( D e. ( PsMet ` X ) /\ P e. X ) -> ( E. x e. ran ( ball ` D ) ( P e. x /\ x C_ A ) -> E. r e. RR+ ( P ( ball ` D ) r ) C_ A ) ) | 
						
							| 10 |  | simpll |  |-  ( ( ( D e. ( PsMet ` X ) /\ P e. X ) /\ ( r e. RR+ /\ ( P ( ball ` D ) r ) C_ A ) ) -> D e. ( PsMet ` X ) ) | 
						
							| 11 |  | simplr |  |-  ( ( ( D e. ( PsMet ` X ) /\ P e. X ) /\ ( r e. RR+ /\ ( P ( ball ` D ) r ) C_ A ) ) -> P e. X ) | 
						
							| 12 |  | rpxr |  |-  ( r e. RR+ -> r e. RR* ) | 
						
							| 13 | 12 | ad2antrl |  |-  ( ( ( D e. ( PsMet ` X ) /\ P e. X ) /\ ( r e. RR+ /\ ( P ( ball ` D ) r ) C_ A ) ) -> r e. RR* ) | 
						
							| 14 |  | blelrnps |  |-  ( ( D e. ( PsMet ` X ) /\ P e. X /\ r e. RR* ) -> ( P ( ball ` D ) r ) e. ran ( ball ` D ) ) | 
						
							| 15 | 10 11 13 14 | syl3anc |  |-  ( ( ( D e. ( PsMet ` X ) /\ P e. X ) /\ ( r e. RR+ /\ ( P ( ball ` D ) r ) C_ A ) ) -> ( P ( ball ` D ) r ) e. ran ( ball ` D ) ) | 
						
							| 16 |  | simprl |  |-  ( ( ( D e. ( PsMet ` X ) /\ P e. X ) /\ ( r e. RR+ /\ ( P ( ball ` D ) r ) C_ A ) ) -> r e. RR+ ) | 
						
							| 17 |  | blcntrps |  |-  ( ( D e. ( PsMet ` X ) /\ P e. X /\ r e. RR+ ) -> P e. ( P ( ball ` D ) r ) ) | 
						
							| 18 | 10 11 16 17 | syl3anc |  |-  ( ( ( D e. ( PsMet ` X ) /\ P e. X ) /\ ( r e. RR+ /\ ( P ( ball ` D ) r ) C_ A ) ) -> P e. ( P ( ball ` D ) r ) ) | 
						
							| 19 |  | simprr |  |-  ( ( ( D e. ( PsMet ` X ) /\ P e. X ) /\ ( r e. RR+ /\ ( P ( ball ` D ) r ) C_ A ) ) -> ( P ( ball ` D ) r ) C_ A ) | 
						
							| 20 |  | eleq2 |  |-  ( x = ( P ( ball ` D ) r ) -> ( P e. x <-> P e. ( P ( ball ` D ) r ) ) ) | 
						
							| 21 |  | sseq1 |  |-  ( x = ( P ( ball ` D ) r ) -> ( x C_ A <-> ( P ( ball ` D ) r ) C_ A ) ) | 
						
							| 22 | 20 21 | anbi12d |  |-  ( x = ( P ( ball ` D ) r ) -> ( ( P e. x /\ x C_ A ) <-> ( P e. ( P ( ball ` D ) r ) /\ ( P ( ball ` D ) r ) C_ A ) ) ) | 
						
							| 23 | 22 | rspcev |  |-  ( ( ( P ( ball ` D ) r ) e. ran ( ball ` D ) /\ ( P e. ( P ( ball ` D ) r ) /\ ( P ( ball ` D ) r ) C_ A ) ) -> E. x e. ran ( ball ` D ) ( P e. x /\ x C_ A ) ) | 
						
							| 24 | 15 18 19 23 | syl12anc |  |-  ( ( ( D e. ( PsMet ` X ) /\ P e. X ) /\ ( r e. RR+ /\ ( P ( ball ` D ) r ) C_ A ) ) -> E. x e. ran ( ball ` D ) ( P e. x /\ x C_ A ) ) | 
						
							| 25 | 24 | rexlimdvaa |  |-  ( ( D e. ( PsMet ` X ) /\ P e. X ) -> ( E. r e. RR+ ( P ( ball ` D ) r ) C_ A -> E. x e. ran ( ball ` D ) ( P e. x /\ x C_ A ) ) ) | 
						
							| 26 | 9 25 | impbid |  |-  ( ( D e. ( PsMet ` X ) /\ P e. X ) -> ( E. x e. ran ( ball ` D ) ( P e. x /\ x C_ A ) <-> E. r e. RR+ ( P ( ball ` D ) r ) C_ A ) ) |