Step |
Hyp |
Ref |
Expression |
1 |
|
remet.1 |
|- D = ( ( abs o. - ) |` ( RR X. RR ) ) |
2 |
1
|
rexmet |
|- D e. ( *Met ` RR ) |
3 |
|
blrn |
|- ( D e. ( *Met ` RR ) -> ( z e. ran ( ball ` D ) <-> E. y e. RR E. r e. RR* z = ( y ( ball ` D ) r ) ) ) |
4 |
2 3
|
ax-mp |
|- ( z e. ran ( ball ` D ) <-> E. y e. RR E. r e. RR* z = ( y ( ball ` D ) r ) ) |
5 |
|
elxr |
|- ( r e. RR* <-> ( r e. RR \/ r = +oo \/ r = -oo ) ) |
6 |
1
|
bl2ioo |
|- ( ( y e. RR /\ r e. RR ) -> ( y ( ball ` D ) r ) = ( ( y - r ) (,) ( y + r ) ) ) |
7 |
|
resubcl |
|- ( ( y e. RR /\ r e. RR ) -> ( y - r ) e. RR ) |
8 |
|
readdcl |
|- ( ( y e. RR /\ r e. RR ) -> ( y + r ) e. RR ) |
9 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
10 |
|
ffn |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
11 |
9 10
|
ax-mp |
|- (,) Fn ( RR* X. RR* ) |
12 |
|
rexr |
|- ( ( y - r ) e. RR -> ( y - r ) e. RR* ) |
13 |
|
rexr |
|- ( ( y + r ) e. RR -> ( y + r ) e. RR* ) |
14 |
|
fnovrn |
|- ( ( (,) Fn ( RR* X. RR* ) /\ ( y - r ) e. RR* /\ ( y + r ) e. RR* ) -> ( ( y - r ) (,) ( y + r ) ) e. ran (,) ) |
15 |
11 12 13 14
|
mp3an3an |
|- ( ( ( y - r ) e. RR /\ ( y + r ) e. RR ) -> ( ( y - r ) (,) ( y + r ) ) e. ran (,) ) |
16 |
7 8 15
|
syl2anc |
|- ( ( y e. RR /\ r e. RR ) -> ( ( y - r ) (,) ( y + r ) ) e. ran (,) ) |
17 |
6 16
|
eqeltrd |
|- ( ( y e. RR /\ r e. RR ) -> ( y ( ball ` D ) r ) e. ran (,) ) |
18 |
|
oveq2 |
|- ( r = +oo -> ( y ( ball ` D ) r ) = ( y ( ball ` D ) +oo ) ) |
19 |
1
|
remet |
|- D e. ( Met ` RR ) |
20 |
|
blpnf |
|- ( ( D e. ( Met ` RR ) /\ y e. RR ) -> ( y ( ball ` D ) +oo ) = RR ) |
21 |
19 20
|
mpan |
|- ( y e. RR -> ( y ( ball ` D ) +oo ) = RR ) |
22 |
18 21
|
sylan9eqr |
|- ( ( y e. RR /\ r = +oo ) -> ( y ( ball ` D ) r ) = RR ) |
23 |
|
ioomax |
|- ( -oo (,) +oo ) = RR |
24 |
|
ioorebas |
|- ( -oo (,) +oo ) e. ran (,) |
25 |
23 24
|
eqeltrri |
|- RR e. ran (,) |
26 |
22 25
|
eqeltrdi |
|- ( ( y e. RR /\ r = +oo ) -> ( y ( ball ` D ) r ) e. ran (,) ) |
27 |
|
oveq2 |
|- ( r = -oo -> ( y ( ball ` D ) r ) = ( y ( ball ` D ) -oo ) ) |
28 |
|
0xr |
|- 0 e. RR* |
29 |
|
nltmnf |
|- ( 0 e. RR* -> -. 0 < -oo ) |
30 |
28 29
|
ax-mp |
|- -. 0 < -oo |
31 |
|
mnfxr |
|- -oo e. RR* |
32 |
|
xbln0 |
|- ( ( D e. ( *Met ` RR ) /\ y e. RR /\ -oo e. RR* ) -> ( ( y ( ball ` D ) -oo ) =/= (/) <-> 0 < -oo ) ) |
33 |
2 31 32
|
mp3an13 |
|- ( y e. RR -> ( ( y ( ball ` D ) -oo ) =/= (/) <-> 0 < -oo ) ) |
34 |
33
|
necon1bbid |
|- ( y e. RR -> ( -. 0 < -oo <-> ( y ( ball ` D ) -oo ) = (/) ) ) |
35 |
30 34
|
mpbii |
|- ( y e. RR -> ( y ( ball ` D ) -oo ) = (/) ) |
36 |
27 35
|
sylan9eqr |
|- ( ( y e. RR /\ r = -oo ) -> ( y ( ball ` D ) r ) = (/) ) |
37 |
|
iooid |
|- ( 0 (,) 0 ) = (/) |
38 |
|
ioorebas |
|- ( 0 (,) 0 ) e. ran (,) |
39 |
37 38
|
eqeltrri |
|- (/) e. ran (,) |
40 |
36 39
|
eqeltrdi |
|- ( ( y e. RR /\ r = -oo ) -> ( y ( ball ` D ) r ) e. ran (,) ) |
41 |
17 26 40
|
3jaodan |
|- ( ( y e. RR /\ ( r e. RR \/ r = +oo \/ r = -oo ) ) -> ( y ( ball ` D ) r ) e. ran (,) ) |
42 |
5 41
|
sylan2b |
|- ( ( y e. RR /\ r e. RR* ) -> ( y ( ball ` D ) r ) e. ran (,) ) |
43 |
|
eleq1 |
|- ( z = ( y ( ball ` D ) r ) -> ( z e. ran (,) <-> ( y ( ball ` D ) r ) e. ran (,) ) ) |
44 |
42 43
|
syl5ibrcom |
|- ( ( y e. RR /\ r e. RR* ) -> ( z = ( y ( ball ` D ) r ) -> z e. ran (,) ) ) |
45 |
44
|
rexlimivv |
|- ( E. y e. RR E. r e. RR* z = ( y ( ball ` D ) r ) -> z e. ran (,) ) |
46 |
4 45
|
sylbi |
|- ( z e. ran ( ball ` D ) -> z e. ran (,) ) |
47 |
46
|
ssriv |
|- ran ( ball ` D ) C_ ran (,) |