Step |
Hyp |
Ref |
Expression |
1 |
|
blssp.2 |
|- N = ( M |` ( S X. S ) ) |
2 |
|
metxmet |
|- ( M e. ( Met ` X ) -> M e. ( *Met ` X ) ) |
3 |
2
|
ad2antrr |
|- ( ( ( M e. ( Met ` X ) /\ S C_ X ) /\ ( Y e. S /\ R e. RR+ ) ) -> M e. ( *Met ` X ) ) |
4 |
|
simprl |
|- ( ( ( M e. ( Met ` X ) /\ S C_ X ) /\ ( Y e. S /\ R e. RR+ ) ) -> Y e. S ) |
5 |
|
simplr |
|- ( ( ( M e. ( Met ` X ) /\ S C_ X ) /\ ( Y e. S /\ R e. RR+ ) ) -> S C_ X ) |
6 |
|
sseqin2 |
|- ( S C_ X <-> ( X i^i S ) = S ) |
7 |
5 6
|
sylib |
|- ( ( ( M e. ( Met ` X ) /\ S C_ X ) /\ ( Y e. S /\ R e. RR+ ) ) -> ( X i^i S ) = S ) |
8 |
4 7
|
eleqtrrd |
|- ( ( ( M e. ( Met ` X ) /\ S C_ X ) /\ ( Y e. S /\ R e. RR+ ) ) -> Y e. ( X i^i S ) ) |
9 |
|
rpxr |
|- ( R e. RR+ -> R e. RR* ) |
10 |
9
|
ad2antll |
|- ( ( ( M e. ( Met ` X ) /\ S C_ X ) /\ ( Y e. S /\ R e. RR+ ) ) -> R e. RR* ) |
11 |
1
|
blres |
|- ( ( M e. ( *Met ` X ) /\ Y e. ( X i^i S ) /\ R e. RR* ) -> ( Y ( ball ` N ) R ) = ( ( Y ( ball ` M ) R ) i^i S ) ) |
12 |
3 8 10 11
|
syl3anc |
|- ( ( ( M e. ( Met ` X ) /\ S C_ X ) /\ ( Y e. S /\ R e. RR+ ) ) -> ( Y ( ball ` N ) R ) = ( ( Y ( ball ` M ) R ) i^i S ) ) |