Step |
Hyp |
Ref |
Expression |
1 |
|
blfval |
|- ( D e. ( *Met ` X ) -> ( ball ` D ) = ( y e. X , r e. RR* |-> { x e. X | ( y D x ) < r } ) ) |
2 |
1
|
3ad2ant1 |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( ball ` D ) = ( y e. X , r e. RR* |-> { x e. X | ( y D x ) < r } ) ) |
3 |
|
simprl |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( y = P /\ r = R ) ) -> y = P ) |
4 |
3
|
oveq1d |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( y = P /\ r = R ) ) -> ( y D x ) = ( P D x ) ) |
5 |
|
simprr |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( y = P /\ r = R ) ) -> r = R ) |
6 |
4 5
|
breq12d |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( y = P /\ r = R ) ) -> ( ( y D x ) < r <-> ( P D x ) < R ) ) |
7 |
6
|
rabbidv |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( y = P /\ r = R ) ) -> { x e. X | ( y D x ) < r } = { x e. X | ( P D x ) < R } ) |
8 |
|
simp2 |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> P e. X ) |
9 |
|
simp3 |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> R e. RR* ) |
10 |
|
elfvdm |
|- ( D e. ( *Met ` X ) -> X e. dom *Met ) |
11 |
10
|
3ad2ant1 |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> X e. dom *Met ) |
12 |
|
rabexg |
|- ( X e. dom *Met -> { x e. X | ( P D x ) < R } e. _V ) |
13 |
11 12
|
syl |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> { x e. X | ( P D x ) < R } e. _V ) |
14 |
2 7 8 9 13
|
ovmpod |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( P ( ball ` D ) R ) = { x e. X | ( P D x ) < R } ) |