Metamath Proof Explorer


Theorem bncmet

Description: The induced metric on Banach space is complete. (Contributed by NM, 8-Sep-2007) (Revised by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses iscms.1
|- X = ( Base ` M )
iscms.2
|- D = ( ( dist ` M ) |` ( X X. X ) )
Assertion bncmet
|- ( M e. Ban -> D e. ( CMet ` X ) )

Proof

Step Hyp Ref Expression
1 iscms.1
 |-  X = ( Base ` M )
2 iscms.2
 |-  D = ( ( dist ` M ) |` ( X X. X ) )
3 bncms
 |-  ( M e. Ban -> M e. CMetSp )
4 1 2 cmscmet
 |-  ( M e. CMetSp -> D e. ( CMet ` X ) )
5 3 4 syl
 |-  ( M e. Ban -> D e. ( CMet ` X ) )