| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cmslssbn.x |  |-  X = ( W |`s U ) | 
						
							| 2 |  | cmscsscms.s |  |-  S = ( ClSubSp ` W ) | 
						
							| 3 |  | bnnvc |  |-  ( W e. Ban -> W e. NrmVec ) | 
						
							| 4 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 5 | 4 | bnsca |  |-  ( W e. Ban -> ( Scalar ` W ) e. CMetSp ) | 
						
							| 6 | 3 5 | jca |  |-  ( W e. Ban -> ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp ) ) | 
						
							| 7 | 6 | ad2antrr |  |-  ( ( ( W e. Ban /\ W e. CPreHil ) /\ U e. S ) -> ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp ) ) | 
						
							| 8 |  | bncms |  |-  ( W e. Ban -> W e. CMetSp ) | 
						
							| 9 | 1 2 | cmscsscms |  |-  ( ( ( W e. CMetSp /\ W e. CPreHil ) /\ U e. S ) -> X e. CMetSp ) | 
						
							| 10 | 8 9 | sylanl1 |  |-  ( ( ( W e. Ban /\ W e. CPreHil ) /\ U e. S ) -> X e. CMetSp ) | 
						
							| 11 |  | cphphl |  |-  ( W e. CPreHil -> W e. PreHil ) | 
						
							| 12 | 11 | adantl |  |-  ( ( W e. Ban /\ W e. CPreHil ) -> W e. PreHil ) | 
						
							| 13 |  | eqid |  |-  ( LSubSp ` W ) = ( LSubSp ` W ) | 
						
							| 14 | 2 13 | csslss |  |-  ( ( W e. PreHil /\ U e. S ) -> U e. ( LSubSp ` W ) ) | 
						
							| 15 | 12 14 | sylan |  |-  ( ( ( W e. Ban /\ W e. CPreHil ) /\ U e. S ) -> U e. ( LSubSp ` W ) ) | 
						
							| 16 | 1 13 | cmslssbn |  |-  ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp ) /\ ( X e. CMetSp /\ U e. ( LSubSp ` W ) ) ) -> X e. Ban ) | 
						
							| 17 | 7 10 15 16 | syl12anc |  |-  ( ( ( W e. Ban /\ W e. CPreHil ) /\ U e. S ) -> X e. Ban ) |