Metamath Proof Explorer


Theorem bnd

Description: A very strong generalization of the Axiom of Replacement (compare zfrep6 ), derived from the Collection Principle cp . Its strength lies in the rather profound fact that ph ( x , y ) does not have to be a "function-like" wff, as it does in the standard Axiom of Replacement. This theorem is sometimes called the Boundedness Axiom. (Contributed by NM, 17-Oct-2004)

Ref Expression
Assertion bnd
|- ( A. x e. z E. y ph -> E. w A. x e. z E. y e. w ph )

Proof

Step Hyp Ref Expression
1 cp
 |-  E. w A. x e. z ( E. y ph -> E. y e. w ph )
2 ralim
 |-  ( A. x e. z ( E. y ph -> E. y e. w ph ) -> ( A. x e. z E. y ph -> A. x e. z E. y e. w ph ) )
3 1 2 eximii
 |-  E. w ( A. x e. z E. y ph -> A. x e. z E. y e. w ph )
4 3 19.37iv
 |-  ( A. x e. z E. y ph -> E. w A. x e. z E. y e. w ph )