| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnd2lem.1 |
|- D = ( M |` ( Y X. Y ) ) |
| 2 |
|
resss |
|- ( M |` ( Y X. Y ) ) C_ M |
| 3 |
1 2
|
eqsstri |
|- D C_ M |
| 4 |
|
dmss |
|- ( D C_ M -> dom D C_ dom M ) |
| 5 |
3 4
|
mp1i |
|- ( ( M e. ( Met ` X ) /\ D e. ( Bnd ` Y ) ) -> dom D C_ dom M ) |
| 6 |
|
bndmet |
|- ( D e. ( Bnd ` Y ) -> D e. ( Met ` Y ) ) |
| 7 |
|
metf |
|- ( D e. ( Met ` Y ) -> D : ( Y X. Y ) --> RR ) |
| 8 |
|
fdm |
|- ( D : ( Y X. Y ) --> RR -> dom D = ( Y X. Y ) ) |
| 9 |
6 7 8
|
3syl |
|- ( D e. ( Bnd ` Y ) -> dom D = ( Y X. Y ) ) |
| 10 |
9
|
adantl |
|- ( ( M e. ( Met ` X ) /\ D e. ( Bnd ` Y ) ) -> dom D = ( Y X. Y ) ) |
| 11 |
|
metf |
|- ( M e. ( Met ` X ) -> M : ( X X. X ) --> RR ) |
| 12 |
11
|
fdmd |
|- ( M e. ( Met ` X ) -> dom M = ( X X. X ) ) |
| 13 |
12
|
adantr |
|- ( ( M e. ( Met ` X ) /\ D e. ( Bnd ` Y ) ) -> dom M = ( X X. X ) ) |
| 14 |
5 10 13
|
3sstr3d |
|- ( ( M e. ( Met ` X ) /\ D e. ( Bnd ` Y ) ) -> ( Y X. Y ) C_ ( X X. X ) ) |
| 15 |
|
dmss |
|- ( ( Y X. Y ) C_ ( X X. X ) -> dom ( Y X. Y ) C_ dom ( X X. X ) ) |
| 16 |
14 15
|
syl |
|- ( ( M e. ( Met ` X ) /\ D e. ( Bnd ` Y ) ) -> dom ( Y X. Y ) C_ dom ( X X. X ) ) |
| 17 |
|
dmxpid |
|- dom ( Y X. Y ) = Y |
| 18 |
|
dmxpid |
|- dom ( X X. X ) = X |
| 19 |
16 17 18
|
3sstr3g |
|- ( ( M e. ( Met ` X ) /\ D e. ( Bnd ` Y ) ) -> Y C_ X ) |