Metamath Proof Explorer


Theorem bndatandm

Description: A point in the open unit disk is in the domain of the arctangent. (Contributed by Mario Carneiro, 5-Apr-2015)

Ref Expression
Assertion bndatandm
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. dom arctan )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. CC )
2 sqcl
 |-  ( A e. CC -> ( A ^ 2 ) e. CC )
3 2 adantr
 |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A ^ 2 ) e. CC )
4 3 abscld
 |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( A ^ 2 ) ) e. RR )
5 2nn0
 |-  2 e. NN0
6 absexp
 |-  ( ( A e. CC /\ 2 e. NN0 ) -> ( abs ` ( A ^ 2 ) ) = ( ( abs ` A ) ^ 2 ) )
7 1 5 6 sylancl
 |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( A ^ 2 ) ) = ( ( abs ` A ) ^ 2 ) )
8 simpr
 |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) < 1 )
9 abscl
 |-  ( A e. CC -> ( abs ` A ) e. RR )
10 9 adantr
 |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) e. RR )
11 1red
 |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 1 e. RR )
12 absge0
 |-  ( A e. CC -> 0 <_ ( abs ` A ) )
13 12 adantr
 |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 <_ ( abs ` A ) )
14 0le1
 |-  0 <_ 1
15 14 a1i
 |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 <_ 1 )
16 10 11 13 15 lt2sqd
 |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) < 1 <-> ( ( abs ` A ) ^ 2 ) < ( 1 ^ 2 ) ) )
17 8 16 mpbid
 |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) ^ 2 ) < ( 1 ^ 2 ) )
18 sq1
 |-  ( 1 ^ 2 ) = 1
19 17 18 breqtrdi
 |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) ^ 2 ) < 1 )
20 7 19 eqbrtrd
 |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( A ^ 2 ) ) < 1 )
21 4 20 ltned
 |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( A ^ 2 ) ) =/= 1 )
22 fveq2
 |-  ( ( A ^ 2 ) = -u 1 -> ( abs ` ( A ^ 2 ) ) = ( abs ` -u 1 ) )
23 ax-1cn
 |-  1 e. CC
24 23 absnegi
 |-  ( abs ` -u 1 ) = ( abs ` 1 )
25 abs1
 |-  ( abs ` 1 ) = 1
26 24 25 eqtri
 |-  ( abs ` -u 1 ) = 1
27 22 26 eqtrdi
 |-  ( ( A ^ 2 ) = -u 1 -> ( abs ` ( A ^ 2 ) ) = 1 )
28 27 necon3i
 |-  ( ( abs ` ( A ^ 2 ) ) =/= 1 -> ( A ^ 2 ) =/= -u 1 )
29 21 28 syl
 |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A ^ 2 ) =/= -u 1 )
30 atandm3
 |-  ( A e. dom arctan <-> ( A e. CC /\ ( A ^ 2 ) =/= -u 1 ) )
31 1 29 30 sylanbrc
 |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. dom arctan )