Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. CC ) |
2 |
|
sqcl |
|- ( A e. CC -> ( A ^ 2 ) e. CC ) |
3 |
2
|
adantr |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A ^ 2 ) e. CC ) |
4 |
3
|
abscld |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( A ^ 2 ) ) e. RR ) |
5 |
|
2nn0 |
|- 2 e. NN0 |
6 |
|
absexp |
|- ( ( A e. CC /\ 2 e. NN0 ) -> ( abs ` ( A ^ 2 ) ) = ( ( abs ` A ) ^ 2 ) ) |
7 |
1 5 6
|
sylancl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( A ^ 2 ) ) = ( ( abs ` A ) ^ 2 ) ) |
8 |
|
simpr |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) < 1 ) |
9 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
10 |
9
|
adantr |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) e. RR ) |
11 |
|
1red |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 1 e. RR ) |
12 |
|
absge0 |
|- ( A e. CC -> 0 <_ ( abs ` A ) ) |
13 |
12
|
adantr |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 <_ ( abs ` A ) ) |
14 |
|
0le1 |
|- 0 <_ 1 |
15 |
14
|
a1i |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 <_ 1 ) |
16 |
10 11 13 15
|
lt2sqd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) < 1 <-> ( ( abs ` A ) ^ 2 ) < ( 1 ^ 2 ) ) ) |
17 |
8 16
|
mpbid |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) ^ 2 ) < ( 1 ^ 2 ) ) |
18 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
19 |
17 18
|
breqtrdi |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) ^ 2 ) < 1 ) |
20 |
7 19
|
eqbrtrd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( A ^ 2 ) ) < 1 ) |
21 |
4 20
|
ltned |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( A ^ 2 ) ) =/= 1 ) |
22 |
|
fveq2 |
|- ( ( A ^ 2 ) = -u 1 -> ( abs ` ( A ^ 2 ) ) = ( abs ` -u 1 ) ) |
23 |
|
ax-1cn |
|- 1 e. CC |
24 |
23
|
absnegi |
|- ( abs ` -u 1 ) = ( abs ` 1 ) |
25 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
26 |
24 25
|
eqtri |
|- ( abs ` -u 1 ) = 1 |
27 |
22 26
|
eqtrdi |
|- ( ( A ^ 2 ) = -u 1 -> ( abs ` ( A ^ 2 ) ) = 1 ) |
28 |
27
|
necon3i |
|- ( ( abs ` ( A ^ 2 ) ) =/= 1 -> ( A ^ 2 ) =/= -u 1 ) |
29 |
21 28
|
syl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A ^ 2 ) =/= -u 1 ) |
30 |
|
atandm3 |
|- ( A e. dom arctan <-> ( A e. CC /\ ( A ^ 2 ) =/= -u 1 ) ) |
31 |
1 29 30
|
sylanbrc |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. dom arctan ) |