Description: A bounded metric space is a metric space. (Contributed by Mario Carneiro, 16-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bndmet | |- ( M e. ( Bnd ` X ) -> M e. ( Met ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isbnd | |- ( M e. ( Bnd ` X ) <-> ( M e. ( Met ` X ) /\ A. x e. X E. y e. RR+ X = ( x ( ball ` M ) y ) ) ) |
|
| 2 | 1 | simplbi | |- ( M e. ( Bnd ` X ) -> M e. ( Met ` X ) ) |