Step |
Hyp |
Ref |
Expression |
1 |
|
metres2 |
|- ( ( M e. ( Met ` X ) /\ S C_ X ) -> ( M |` ( S X. S ) ) e. ( Met ` S ) ) |
2 |
1
|
adantlr |
|- ( ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ S C_ X ) -> ( M |` ( S X. S ) ) e. ( Met ` S ) ) |
3 |
|
ssel2 |
|- ( ( S C_ X /\ x e. S ) -> x e. X ) |
4 |
3
|
ancoms |
|- ( ( x e. S /\ S C_ X ) -> x e. X ) |
5 |
|
oveq1 |
|- ( y = x -> ( y ( ball ` M ) r ) = ( x ( ball ` M ) r ) ) |
6 |
5
|
eqeq2d |
|- ( y = x -> ( X = ( y ( ball ` M ) r ) <-> X = ( x ( ball ` M ) r ) ) ) |
7 |
6
|
rexbidv |
|- ( y = x -> ( E. r e. RR+ X = ( y ( ball ` M ) r ) <-> E. r e. RR+ X = ( x ( ball ` M ) r ) ) ) |
8 |
7
|
rspcva |
|- ( ( x e. X /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) -> E. r e. RR+ X = ( x ( ball ` M ) r ) ) |
9 |
4 8
|
sylan |
|- ( ( ( x e. S /\ S C_ X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) -> E. r e. RR+ X = ( x ( ball ` M ) r ) ) |
10 |
9
|
adantlll |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) -> E. r e. RR+ X = ( x ( ball ` M ) r ) ) |
11 |
|
dfss |
|- ( S C_ X <-> S = ( S i^i X ) ) |
12 |
11
|
biimpi |
|- ( S C_ X -> S = ( S i^i X ) ) |
13 |
|
incom |
|- ( S i^i X ) = ( X i^i S ) |
14 |
12 13
|
eqtrdi |
|- ( S C_ X -> S = ( X i^i S ) ) |
15 |
|
ineq1 |
|- ( X = ( x ( ball ` M ) r ) -> ( X i^i S ) = ( ( x ( ball ` M ) r ) i^i S ) ) |
16 |
14 15
|
sylan9eq |
|- ( ( S C_ X /\ X = ( x ( ball ` M ) r ) ) -> S = ( ( x ( ball ` M ) r ) i^i S ) ) |
17 |
16
|
adantll |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ X = ( x ( ball ` M ) r ) ) -> S = ( ( x ( ball ` M ) r ) i^i S ) ) |
18 |
17
|
adantlr |
|- ( ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ r e. RR+ ) /\ X = ( x ( ball ` M ) r ) ) -> S = ( ( x ( ball ` M ) r ) i^i S ) ) |
19 |
|
eqid |
|- ( M |` ( S X. S ) ) = ( M |` ( S X. S ) ) |
20 |
19
|
blssp |
|- ( ( ( M e. ( Met ` X ) /\ S C_ X ) /\ ( x e. S /\ r e. RR+ ) ) -> ( x ( ball ` ( M |` ( S X. S ) ) ) r ) = ( ( x ( ball ` M ) r ) i^i S ) ) |
21 |
20
|
an4s |
|- ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ ( S C_ X /\ r e. RR+ ) ) -> ( x ( ball ` ( M |` ( S X. S ) ) ) r ) = ( ( x ( ball ` M ) r ) i^i S ) ) |
22 |
21
|
anassrs |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ r e. RR+ ) -> ( x ( ball ` ( M |` ( S X. S ) ) ) r ) = ( ( x ( ball ` M ) r ) i^i S ) ) |
23 |
22
|
adantr |
|- ( ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ r e. RR+ ) /\ X = ( x ( ball ` M ) r ) ) -> ( x ( ball ` ( M |` ( S X. S ) ) ) r ) = ( ( x ( ball ` M ) r ) i^i S ) ) |
24 |
18 23
|
eqtr4d |
|- ( ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ r e. RR+ ) /\ X = ( x ( ball ` M ) r ) ) -> S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) |
25 |
24
|
ex |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ r e. RR+ ) -> ( X = ( x ( ball ` M ) r ) -> S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) ) |
26 |
25
|
reximdva |
|- ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) -> ( E. r e. RR+ X = ( x ( ball ` M ) r ) -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) ) |
27 |
26
|
imp |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ E. r e. RR+ X = ( x ( ball ` M ) r ) ) -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) |
28 |
10 27
|
syldan |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) |
29 |
28
|
an32s |
|- ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ S C_ X ) -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) |
30 |
29
|
ex |
|- ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) -> ( S C_ X -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) ) |
31 |
30
|
an32s |
|- ( ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ x e. S ) -> ( S C_ X -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) ) |
32 |
31
|
imp |
|- ( ( ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ x e. S ) /\ S C_ X ) -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) |
33 |
32
|
an32s |
|- ( ( ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ S C_ X ) /\ x e. S ) -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) |
34 |
33
|
ralrimiva |
|- ( ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ S C_ X ) -> A. x e. S E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) |
35 |
2 34
|
jca |
|- ( ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ S C_ X ) -> ( ( M |` ( S X. S ) ) e. ( Met ` S ) /\ A. x e. S E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) ) |
36 |
|
isbnd |
|- ( M e. ( Bnd ` X ) <-> ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) ) |
37 |
36
|
anbi1i |
|- ( ( M e. ( Bnd ` X ) /\ S C_ X ) <-> ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ S C_ X ) ) |
38 |
|
isbnd |
|- ( ( M |` ( S X. S ) ) e. ( Bnd ` S ) <-> ( ( M |` ( S X. S ) ) e. ( Met ` S ) /\ A. x e. S E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) ) |
39 |
35 37 38
|
3imtr4i |
|- ( ( M e. ( Bnd ` X ) /\ S C_ X ) -> ( M |` ( S X. S ) ) e. ( Bnd ` S ) ) |