| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							metres2 | 
							 |-  ( ( M e. ( Met ` X ) /\ S C_ X ) -> ( M |` ( S X. S ) ) e. ( Met ` S ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							adantlr | 
							 |-  ( ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ S C_ X ) -> ( M |` ( S X. S ) ) e. ( Met ` S ) )  | 
						
						
							| 3 | 
							
								
							 | 
							ssel2 | 
							 |-  ( ( S C_ X /\ x e. S ) -> x e. X )  | 
						
						
							| 4 | 
							
								3
							 | 
							ancoms | 
							 |-  ( ( x e. S /\ S C_ X ) -> x e. X )  | 
						
						
							| 5 | 
							
								
							 | 
							oveq1 | 
							 |-  ( y = x -> ( y ( ball ` M ) r ) = ( x ( ball ` M ) r ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							eqeq2d | 
							 |-  ( y = x -> ( X = ( y ( ball ` M ) r ) <-> X = ( x ( ball ` M ) r ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							rexbidv | 
							 |-  ( y = x -> ( E. r e. RR+ X = ( y ( ball ` M ) r ) <-> E. r e. RR+ X = ( x ( ball ` M ) r ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							rspcva | 
							 |-  ( ( x e. X /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) -> E. r e. RR+ X = ( x ( ball ` M ) r ) )  | 
						
						
							| 9 | 
							
								4 8
							 | 
							sylan | 
							 |-  ( ( ( x e. S /\ S C_ X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) -> E. r e. RR+ X = ( x ( ball ` M ) r ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantlll | 
							 |-  ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) -> E. r e. RR+ X = ( x ( ball ` M ) r ) )  | 
						
						
							| 11 | 
							
								
							 | 
							dfss | 
							 |-  ( S C_ X <-> S = ( S i^i X ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							biimpi | 
							 |-  ( S C_ X -> S = ( S i^i X ) )  | 
						
						
							| 13 | 
							
								
							 | 
							incom | 
							 |-  ( S i^i X ) = ( X i^i S )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							eqtrdi | 
							 |-  ( S C_ X -> S = ( X i^i S ) )  | 
						
						
							| 15 | 
							
								
							 | 
							ineq1 | 
							 |-  ( X = ( x ( ball ` M ) r ) -> ( X i^i S ) = ( ( x ( ball ` M ) r ) i^i S ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							sylan9eq | 
							 |-  ( ( S C_ X /\ X = ( x ( ball ` M ) r ) ) -> S = ( ( x ( ball ` M ) r ) i^i S ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantll | 
							 |-  ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ X = ( x ( ball ` M ) r ) ) -> S = ( ( x ( ball ` M ) r ) i^i S ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantlr | 
							 |-  ( ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ r e. RR+ ) /\ X = ( x ( ball ` M ) r ) ) -> S = ( ( x ( ball ` M ) r ) i^i S ) )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							 |-  ( M |` ( S X. S ) ) = ( M |` ( S X. S ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							blssp | 
							 |-  ( ( ( M e. ( Met ` X ) /\ S C_ X ) /\ ( x e. S /\ r e. RR+ ) ) -> ( x ( ball ` ( M |` ( S X. S ) ) ) r ) = ( ( x ( ball ` M ) r ) i^i S ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							an4s | 
							 |-  ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ ( S C_ X /\ r e. RR+ ) ) -> ( x ( ball ` ( M |` ( S X. S ) ) ) r ) = ( ( x ( ball ` M ) r ) i^i S ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							anassrs | 
							 |-  ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ r e. RR+ ) -> ( x ( ball ` ( M |` ( S X. S ) ) ) r ) = ( ( x ( ball ` M ) r ) i^i S ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantr | 
							 |-  ( ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ r e. RR+ ) /\ X = ( x ( ball ` M ) r ) ) -> ( x ( ball ` ( M |` ( S X. S ) ) ) r ) = ( ( x ( ball ` M ) r ) i^i S ) )  | 
						
						
							| 24 | 
							
								18 23
							 | 
							eqtr4d | 
							 |-  ( ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ r e. RR+ ) /\ X = ( x ( ball ` M ) r ) ) -> S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							ex | 
							 |-  ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ r e. RR+ ) -> ( X = ( x ( ball ` M ) r ) -> S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							reximdva | 
							 |-  ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) -> ( E. r e. RR+ X = ( x ( ball ` M ) r ) -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							imp | 
							 |-  ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ E. r e. RR+ X = ( x ( ball ` M ) r ) ) -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) )  | 
						
						
							| 28 | 
							
								10 27
							 | 
							syldan | 
							 |-  ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							an32s | 
							 |-  ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ S C_ X ) -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							ex | 
							 |-  ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) -> ( S C_ X -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							an32s | 
							 |-  ( ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ x e. S ) -> ( S C_ X -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							imp | 
							 |-  ( ( ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ x e. S ) /\ S C_ X ) -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							an32s | 
							 |-  ( ( ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ S C_ X ) /\ x e. S ) -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							ralrimiva | 
							 |-  ( ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ S C_ X ) -> A. x e. S E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) )  | 
						
						
							| 35 | 
							
								2 34
							 | 
							jca | 
							 |-  ( ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ S C_ X ) -> ( ( M |` ( S X. S ) ) e. ( Met ` S ) /\ A. x e. S E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							isbnd | 
							 |-  ( M e. ( Bnd ` X ) <-> ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							anbi1i | 
							 |-  ( ( M e. ( Bnd ` X ) /\ S C_ X ) <-> ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ S C_ X ) )  | 
						
						
							| 38 | 
							
								
							 | 
							isbnd | 
							 |-  ( ( M |` ( S X. S ) ) e. ( Bnd ` S ) <-> ( ( M |` ( S X. S ) ) e. ( Met ` S ) /\ A. x e. S E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) )  | 
						
						
							| 39 | 
							
								35 37 38
							 | 
							3imtr4i | 
							 |-  ( ( M e. ( Bnd ` X ) /\ S C_ X ) -> ( M |` ( S X. S ) ) e. ( Bnd ` S ) )  |