| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bndth.1 |  |-  X = U. J | 
						
							| 2 |  | bndth.2 |  |-  K = ( topGen ` ran (,) ) | 
						
							| 3 |  | bndth.3 |  |-  ( ph -> J e. Comp ) | 
						
							| 4 |  | bndth.4 |  |-  ( ph -> F e. ( J Cn K ) ) | 
						
							| 5 |  | retopon |  |-  ( topGen ` ran (,) ) e. ( TopOn ` RR ) | 
						
							| 6 | 2 5 | eqeltri |  |-  K e. ( TopOn ` RR ) | 
						
							| 7 | 6 | toponunii |  |-  RR = U. K | 
						
							| 8 | 1 7 | cnf |  |-  ( F e. ( J Cn K ) -> F : X --> RR ) | 
						
							| 9 | 4 8 | syl |  |-  ( ph -> F : X --> RR ) | 
						
							| 10 | 9 | frnd |  |-  ( ph -> ran F C_ RR ) | 
						
							| 11 |  | unieq |  |-  ( u = ( (,) " ( { -oo } X. RR ) ) -> U. u = U. ( (,) " ( { -oo } X. RR ) ) ) | 
						
							| 12 |  | imassrn |  |-  ( (,) " ( { -oo } X. RR ) ) C_ ran (,) | 
						
							| 13 | 12 | unissi |  |-  U. ( (,) " ( { -oo } X. RR ) ) C_ U. ran (,) | 
						
							| 14 |  | unirnioo |  |-  RR = U. ran (,) | 
						
							| 15 | 13 14 | sseqtrri |  |-  U. ( (,) " ( { -oo } X. RR ) ) C_ RR | 
						
							| 16 |  | id |  |-  ( x e. RR -> x e. RR ) | 
						
							| 17 |  | ltp1 |  |-  ( x e. RR -> x < ( x + 1 ) ) | 
						
							| 18 |  | ressxr |  |-  RR C_ RR* | 
						
							| 19 |  | peano2re |  |-  ( x e. RR -> ( x + 1 ) e. RR ) | 
						
							| 20 | 18 19 | sselid |  |-  ( x e. RR -> ( x + 1 ) e. RR* ) | 
						
							| 21 |  | elioomnf |  |-  ( ( x + 1 ) e. RR* -> ( x e. ( -oo (,) ( x + 1 ) ) <-> ( x e. RR /\ x < ( x + 1 ) ) ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( x e. RR -> ( x e. ( -oo (,) ( x + 1 ) ) <-> ( x e. RR /\ x < ( x + 1 ) ) ) ) | 
						
							| 23 | 16 17 22 | mpbir2and |  |-  ( x e. RR -> x e. ( -oo (,) ( x + 1 ) ) ) | 
						
							| 24 |  | df-ov |  |-  ( -oo (,) ( x + 1 ) ) = ( (,) ` <. -oo , ( x + 1 ) >. ) | 
						
							| 25 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 26 | 25 | elexi |  |-  -oo e. _V | 
						
							| 27 | 26 | snid |  |-  -oo e. { -oo } | 
						
							| 28 |  | opelxpi |  |-  ( ( -oo e. { -oo } /\ ( x + 1 ) e. RR ) -> <. -oo , ( x + 1 ) >. e. ( { -oo } X. RR ) ) | 
						
							| 29 | 27 19 28 | sylancr |  |-  ( x e. RR -> <. -oo , ( x + 1 ) >. e. ( { -oo } X. RR ) ) | 
						
							| 30 |  | ioof |  |-  (,) : ( RR* X. RR* ) --> ~P RR | 
						
							| 31 |  | ffun |  |-  ( (,) : ( RR* X. RR* ) --> ~P RR -> Fun (,) ) | 
						
							| 32 | 30 31 | ax-mp |  |-  Fun (,) | 
						
							| 33 |  | snssi |  |-  ( -oo e. RR* -> { -oo } C_ RR* ) | 
						
							| 34 | 25 33 | ax-mp |  |-  { -oo } C_ RR* | 
						
							| 35 |  | xpss12 |  |-  ( ( { -oo } C_ RR* /\ RR C_ RR* ) -> ( { -oo } X. RR ) C_ ( RR* X. RR* ) ) | 
						
							| 36 | 34 18 35 | mp2an |  |-  ( { -oo } X. RR ) C_ ( RR* X. RR* ) | 
						
							| 37 | 30 | fdmi |  |-  dom (,) = ( RR* X. RR* ) | 
						
							| 38 | 36 37 | sseqtrri |  |-  ( { -oo } X. RR ) C_ dom (,) | 
						
							| 39 |  | funfvima2 |  |-  ( ( Fun (,) /\ ( { -oo } X. RR ) C_ dom (,) ) -> ( <. -oo , ( x + 1 ) >. e. ( { -oo } X. RR ) -> ( (,) ` <. -oo , ( x + 1 ) >. ) e. ( (,) " ( { -oo } X. RR ) ) ) ) | 
						
							| 40 | 32 38 39 | mp2an |  |-  ( <. -oo , ( x + 1 ) >. e. ( { -oo } X. RR ) -> ( (,) ` <. -oo , ( x + 1 ) >. ) e. ( (,) " ( { -oo } X. RR ) ) ) | 
						
							| 41 | 29 40 | syl |  |-  ( x e. RR -> ( (,) ` <. -oo , ( x + 1 ) >. ) e. ( (,) " ( { -oo } X. RR ) ) ) | 
						
							| 42 | 24 41 | eqeltrid |  |-  ( x e. RR -> ( -oo (,) ( x + 1 ) ) e. ( (,) " ( { -oo } X. RR ) ) ) | 
						
							| 43 |  | elunii |  |-  ( ( x e. ( -oo (,) ( x + 1 ) ) /\ ( -oo (,) ( x + 1 ) ) e. ( (,) " ( { -oo } X. RR ) ) ) -> x e. U. ( (,) " ( { -oo } X. RR ) ) ) | 
						
							| 44 | 23 42 43 | syl2anc |  |-  ( x e. RR -> x e. U. ( (,) " ( { -oo } X. RR ) ) ) | 
						
							| 45 | 44 | ssriv |  |-  RR C_ U. ( (,) " ( { -oo } X. RR ) ) | 
						
							| 46 | 15 45 | eqssi |  |-  U. ( (,) " ( { -oo } X. RR ) ) = RR | 
						
							| 47 | 11 46 | eqtrdi |  |-  ( u = ( (,) " ( { -oo } X. RR ) ) -> U. u = RR ) | 
						
							| 48 | 47 | sseq2d |  |-  ( u = ( (,) " ( { -oo } X. RR ) ) -> ( ran F C_ U. u <-> ran F C_ RR ) ) | 
						
							| 49 |  | pweq |  |-  ( u = ( (,) " ( { -oo } X. RR ) ) -> ~P u = ~P ( (,) " ( { -oo } X. RR ) ) ) | 
						
							| 50 | 49 | ineq1d |  |-  ( u = ( (,) " ( { -oo } X. RR ) ) -> ( ~P u i^i Fin ) = ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) | 
						
							| 51 | 50 | rexeqdv |  |-  ( u = ( (,) " ( { -oo } X. RR ) ) -> ( E. v e. ( ~P u i^i Fin ) ran F C_ U. v <-> E. v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ran F C_ U. v ) ) | 
						
							| 52 | 48 51 | imbi12d |  |-  ( u = ( (,) " ( { -oo } X. RR ) ) -> ( ( ran F C_ U. u -> E. v e. ( ~P u i^i Fin ) ran F C_ U. v ) <-> ( ran F C_ RR -> E. v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ran F C_ U. v ) ) ) | 
						
							| 53 |  | rncmp |  |-  ( ( J e. Comp /\ F e. ( J Cn K ) ) -> ( K |`t ran F ) e. Comp ) | 
						
							| 54 | 3 4 53 | syl2anc |  |-  ( ph -> ( K |`t ran F ) e. Comp ) | 
						
							| 55 |  | retop |  |-  ( topGen ` ran (,) ) e. Top | 
						
							| 56 | 2 55 | eqeltri |  |-  K e. Top | 
						
							| 57 | 7 | cmpsub |  |-  ( ( K e. Top /\ ran F C_ RR ) -> ( ( K |`t ran F ) e. Comp <-> A. u e. ~P K ( ran F C_ U. u -> E. v e. ( ~P u i^i Fin ) ran F C_ U. v ) ) ) | 
						
							| 58 | 56 10 57 | sylancr |  |-  ( ph -> ( ( K |`t ran F ) e. Comp <-> A. u e. ~P K ( ran F C_ U. u -> E. v e. ( ~P u i^i Fin ) ran F C_ U. v ) ) ) | 
						
							| 59 | 54 58 | mpbid |  |-  ( ph -> A. u e. ~P K ( ran F C_ U. u -> E. v e. ( ~P u i^i Fin ) ran F C_ U. v ) ) | 
						
							| 60 |  | retopbas |  |-  ran (,) e. TopBases | 
						
							| 61 |  | bastg |  |-  ( ran (,) e. TopBases -> ran (,) C_ ( topGen ` ran (,) ) ) | 
						
							| 62 | 60 61 | ax-mp |  |-  ran (,) C_ ( topGen ` ran (,) ) | 
						
							| 63 | 62 2 | sseqtrri |  |-  ran (,) C_ K | 
						
							| 64 | 12 63 | sstri |  |-  ( (,) " ( { -oo } X. RR ) ) C_ K | 
						
							| 65 | 56 64 | elpwi2 |  |-  ( (,) " ( { -oo } X. RR ) ) e. ~P K | 
						
							| 66 | 65 | a1i |  |-  ( ph -> ( (,) " ( { -oo } X. RR ) ) e. ~P K ) | 
						
							| 67 | 52 59 66 | rspcdva |  |-  ( ph -> ( ran F C_ RR -> E. v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ran F C_ U. v ) ) | 
						
							| 68 | 10 67 | mpd |  |-  ( ph -> E. v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ran F C_ U. v ) | 
						
							| 69 |  | simpr |  |-  ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) -> v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) | 
						
							| 70 |  | elin |  |-  ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) <-> ( v e. ~P ( (,) " ( { -oo } X. RR ) ) /\ v e. Fin ) ) | 
						
							| 71 | 69 70 | sylib |  |-  ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) -> ( v e. ~P ( (,) " ( { -oo } X. RR ) ) /\ v e. Fin ) ) | 
						
							| 72 | 71 | adantrr |  |-  ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) -> ( v e. ~P ( (,) " ( { -oo } X. RR ) ) /\ v e. Fin ) ) | 
						
							| 73 | 72 | simprd |  |-  ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) -> v e. Fin ) | 
						
							| 74 | 71 | simpld |  |-  ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) -> v e. ~P ( (,) " ( { -oo } X. RR ) ) ) | 
						
							| 75 | 74 | elpwid |  |-  ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) -> v C_ ( (,) " ( { -oo } X. RR ) ) ) | 
						
							| 76 | 34 | sseli |  |-  ( u e. { -oo } -> u e. RR* ) | 
						
							| 77 | 76 | adantr |  |-  ( ( u e. { -oo } /\ w e. RR ) -> u e. RR* ) | 
						
							| 78 | 18 | sseli |  |-  ( w e. RR -> w e. RR* ) | 
						
							| 79 | 78 | adantl |  |-  ( ( u e. { -oo } /\ w e. RR ) -> w e. RR* ) | 
						
							| 80 |  | mnflt |  |-  ( w e. RR -> -oo < w ) | 
						
							| 81 |  | xrltnle |  |-  ( ( -oo e. RR* /\ w e. RR* ) -> ( -oo < w <-> -. w <_ -oo ) ) | 
						
							| 82 | 25 78 81 | sylancr |  |-  ( w e. RR -> ( -oo < w <-> -. w <_ -oo ) ) | 
						
							| 83 | 80 82 | mpbid |  |-  ( w e. RR -> -. w <_ -oo ) | 
						
							| 84 | 83 | adantl |  |-  ( ( u e. { -oo } /\ w e. RR ) -> -. w <_ -oo ) | 
						
							| 85 |  | elsni |  |-  ( u e. { -oo } -> u = -oo ) | 
						
							| 86 | 85 | adantr |  |-  ( ( u e. { -oo } /\ w e. RR ) -> u = -oo ) | 
						
							| 87 | 86 | breq2d |  |-  ( ( u e. { -oo } /\ w e. RR ) -> ( w <_ u <-> w <_ -oo ) ) | 
						
							| 88 | 84 87 | mtbird |  |-  ( ( u e. { -oo } /\ w e. RR ) -> -. w <_ u ) | 
						
							| 89 |  | ioo0 |  |-  ( ( u e. RR* /\ w e. RR* ) -> ( ( u (,) w ) = (/) <-> w <_ u ) ) | 
						
							| 90 | 76 78 89 | syl2an |  |-  ( ( u e. { -oo } /\ w e. RR ) -> ( ( u (,) w ) = (/) <-> w <_ u ) ) | 
						
							| 91 | 90 | necon3abid |  |-  ( ( u e. { -oo } /\ w e. RR ) -> ( ( u (,) w ) =/= (/) <-> -. w <_ u ) ) | 
						
							| 92 | 88 91 | mpbird |  |-  ( ( u e. { -oo } /\ w e. RR ) -> ( u (,) w ) =/= (/) ) | 
						
							| 93 |  | df-ioo |  |-  (,) = ( y e. RR* , z e. RR* |-> { v e. RR* | ( y < v /\ v < z ) } ) | 
						
							| 94 |  | idd |  |-  ( ( x e. RR* /\ w e. RR* ) -> ( x < w -> x < w ) ) | 
						
							| 95 |  | xrltle |  |-  ( ( x e. RR* /\ w e. RR* ) -> ( x < w -> x <_ w ) ) | 
						
							| 96 |  | idd |  |-  ( ( u e. RR* /\ x e. RR* ) -> ( u < x -> u < x ) ) | 
						
							| 97 |  | xrltle |  |-  ( ( u e. RR* /\ x e. RR* ) -> ( u < x -> u <_ x ) ) | 
						
							| 98 | 93 94 95 96 97 | ixxub |  |-  ( ( u e. RR* /\ w e. RR* /\ ( u (,) w ) =/= (/) ) -> sup ( ( u (,) w ) , RR* , < ) = w ) | 
						
							| 99 | 77 79 92 98 | syl3anc |  |-  ( ( u e. { -oo } /\ w e. RR ) -> sup ( ( u (,) w ) , RR* , < ) = w ) | 
						
							| 100 |  | simpr |  |-  ( ( u e. { -oo } /\ w e. RR ) -> w e. RR ) | 
						
							| 101 | 99 100 | eqeltrd |  |-  ( ( u e. { -oo } /\ w e. RR ) -> sup ( ( u (,) w ) , RR* , < ) e. RR ) | 
						
							| 102 | 101 | rgen2 |  |-  A. u e. { -oo } A. w e. RR sup ( ( u (,) w ) , RR* , < ) e. RR | 
						
							| 103 |  | fveq2 |  |-  ( z = <. u , w >. -> ( (,) ` z ) = ( (,) ` <. u , w >. ) ) | 
						
							| 104 |  | df-ov |  |-  ( u (,) w ) = ( (,) ` <. u , w >. ) | 
						
							| 105 | 103 104 | eqtr4di |  |-  ( z = <. u , w >. -> ( (,) ` z ) = ( u (,) w ) ) | 
						
							| 106 | 105 | supeq1d |  |-  ( z = <. u , w >. -> sup ( ( (,) ` z ) , RR* , < ) = sup ( ( u (,) w ) , RR* , < ) ) | 
						
							| 107 | 106 | eleq1d |  |-  ( z = <. u , w >. -> ( sup ( ( (,) ` z ) , RR* , < ) e. RR <-> sup ( ( u (,) w ) , RR* , < ) e. RR ) ) | 
						
							| 108 | 107 | ralxp |  |-  ( A. z e. ( { -oo } X. RR ) sup ( ( (,) ` z ) , RR* , < ) e. RR <-> A. u e. { -oo } A. w e. RR sup ( ( u (,) w ) , RR* , < ) e. RR ) | 
						
							| 109 | 102 108 | mpbir |  |-  A. z e. ( { -oo } X. RR ) sup ( ( (,) ` z ) , RR* , < ) e. RR | 
						
							| 110 |  | ffn |  |-  ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) | 
						
							| 111 | 30 110 | ax-mp |  |-  (,) Fn ( RR* X. RR* ) | 
						
							| 112 |  | supeq1 |  |-  ( w = ( (,) ` z ) -> sup ( w , RR* , < ) = sup ( ( (,) ` z ) , RR* , < ) ) | 
						
							| 113 | 112 | eleq1d |  |-  ( w = ( (,) ` z ) -> ( sup ( w , RR* , < ) e. RR <-> sup ( ( (,) ` z ) , RR* , < ) e. RR ) ) | 
						
							| 114 | 113 | ralima |  |-  ( ( (,) Fn ( RR* X. RR* ) /\ ( { -oo } X. RR ) C_ ( RR* X. RR* ) ) -> ( A. w e. ( (,) " ( { -oo } X. RR ) ) sup ( w , RR* , < ) e. RR <-> A. z e. ( { -oo } X. RR ) sup ( ( (,) ` z ) , RR* , < ) e. RR ) ) | 
						
							| 115 | 111 36 114 | mp2an |  |-  ( A. w e. ( (,) " ( { -oo } X. RR ) ) sup ( w , RR* , < ) e. RR <-> A. z e. ( { -oo } X. RR ) sup ( ( (,) ` z ) , RR* , < ) e. RR ) | 
						
							| 116 | 109 115 | mpbir |  |-  A. w e. ( (,) " ( { -oo } X. RR ) ) sup ( w , RR* , < ) e. RR | 
						
							| 117 |  | ssralv |  |-  ( v C_ ( (,) " ( { -oo } X. RR ) ) -> ( A. w e. ( (,) " ( { -oo } X. RR ) ) sup ( w , RR* , < ) e. RR -> A. w e. v sup ( w , RR* , < ) e. RR ) ) | 
						
							| 118 | 75 116 117 | mpisyl |  |-  ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) -> A. w e. v sup ( w , RR* , < ) e. RR ) | 
						
							| 119 | 118 | adantrr |  |-  ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) -> A. w e. v sup ( w , RR* , < ) e. RR ) | 
						
							| 120 |  | fimaxre3 |  |-  ( ( v e. Fin /\ A. w e. v sup ( w , RR* , < ) e. RR ) -> E. x e. RR A. w e. v sup ( w , RR* , < ) <_ x ) | 
						
							| 121 | 73 119 120 | syl2anc |  |-  ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) -> E. x e. RR A. w e. v sup ( w , RR* , < ) <_ x ) | 
						
							| 122 |  | simplrr |  |-  ( ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) /\ x e. RR ) -> ran F C_ U. v ) | 
						
							| 123 | 122 | sselda |  |-  ( ( ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) /\ x e. RR ) /\ z e. ran F ) -> z e. U. v ) | 
						
							| 124 |  | eluni2 |  |-  ( z e. U. v <-> E. w e. v z e. w ) | 
						
							| 125 |  | r19.29r |  |-  ( ( E. w e. v z e. w /\ A. w e. v sup ( w , RR* , < ) <_ x ) -> E. w e. v ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) | 
						
							| 126 |  | sspwuni |  |-  ( ( (,) " ( { -oo } X. RR ) ) C_ ~P RR <-> U. ( (,) " ( { -oo } X. RR ) ) C_ RR ) | 
						
							| 127 | 15 126 | mpbir |  |-  ( (,) " ( { -oo } X. RR ) ) C_ ~P RR | 
						
							| 128 | 75 | 3ad2ant1 |  |-  ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> v C_ ( (,) " ( { -oo } X. RR ) ) ) | 
						
							| 129 |  | simp2r |  |-  ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> w e. v ) | 
						
							| 130 | 128 129 | sseldd |  |-  ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> w e. ( (,) " ( { -oo } X. RR ) ) ) | 
						
							| 131 | 127 130 | sselid |  |-  ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> w e. ~P RR ) | 
						
							| 132 | 131 | elpwid |  |-  ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> w C_ RR ) | 
						
							| 133 |  | simp3l |  |-  ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> z e. w ) | 
						
							| 134 | 132 133 | sseldd |  |-  ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> z e. RR ) | 
						
							| 135 | 118 | r19.21bi |  |-  ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ w e. v ) -> sup ( w , RR* , < ) e. RR ) | 
						
							| 136 | 135 | adantrl |  |-  ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) ) -> sup ( w , RR* , < ) e. RR ) | 
						
							| 137 | 136 | 3adant3 |  |-  ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> sup ( w , RR* , < ) e. RR ) | 
						
							| 138 |  | simp2l |  |-  ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> x e. RR ) | 
						
							| 139 | 132 18 | sstrdi |  |-  ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> w C_ RR* ) | 
						
							| 140 |  | supxrub |  |-  ( ( w C_ RR* /\ z e. w ) -> z <_ sup ( w , RR* , < ) ) | 
						
							| 141 | 139 133 140 | syl2anc |  |-  ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> z <_ sup ( w , RR* , < ) ) | 
						
							| 142 |  | simp3r |  |-  ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> sup ( w , RR* , < ) <_ x ) | 
						
							| 143 | 134 137 138 141 142 | letrd |  |-  ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> z <_ x ) | 
						
							| 144 | 143 | 3expia |  |-  ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) ) -> ( ( z e. w /\ sup ( w , RR* , < ) <_ x ) -> z <_ x ) ) | 
						
							| 145 | 144 | anassrs |  |-  ( ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ x e. RR ) /\ w e. v ) -> ( ( z e. w /\ sup ( w , RR* , < ) <_ x ) -> z <_ x ) ) | 
						
							| 146 | 145 | rexlimdva |  |-  ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ x e. RR ) -> ( E. w e. v ( z e. w /\ sup ( w , RR* , < ) <_ x ) -> z <_ x ) ) | 
						
							| 147 | 146 | adantlrr |  |-  ( ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) /\ x e. RR ) -> ( E. w e. v ( z e. w /\ sup ( w , RR* , < ) <_ x ) -> z <_ x ) ) | 
						
							| 148 | 125 147 | syl5 |  |-  ( ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) /\ x e. RR ) -> ( ( E. w e. v z e. w /\ A. w e. v sup ( w , RR* , < ) <_ x ) -> z <_ x ) ) | 
						
							| 149 | 148 | expdimp |  |-  ( ( ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) /\ x e. RR ) /\ E. w e. v z e. w ) -> ( A. w e. v sup ( w , RR* , < ) <_ x -> z <_ x ) ) | 
						
							| 150 | 124 149 | sylan2b |  |-  ( ( ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) /\ x e. RR ) /\ z e. U. v ) -> ( A. w e. v sup ( w , RR* , < ) <_ x -> z <_ x ) ) | 
						
							| 151 | 123 150 | syldan |  |-  ( ( ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) /\ x e. RR ) /\ z e. ran F ) -> ( A. w e. v sup ( w , RR* , < ) <_ x -> z <_ x ) ) | 
						
							| 152 | 151 | ralrimdva |  |-  ( ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) /\ x e. RR ) -> ( A. w e. v sup ( w , RR* , < ) <_ x -> A. z e. ran F z <_ x ) ) | 
						
							| 153 | 9 | ffnd |  |-  ( ph -> F Fn X ) | 
						
							| 154 | 153 | ad2antrr |  |-  ( ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) /\ x e. RR ) -> F Fn X ) | 
						
							| 155 |  | breq1 |  |-  ( z = ( F ` y ) -> ( z <_ x <-> ( F ` y ) <_ x ) ) | 
						
							| 156 | 155 | ralrn |  |-  ( F Fn X -> ( A. z e. ran F z <_ x <-> A. y e. X ( F ` y ) <_ x ) ) | 
						
							| 157 | 154 156 | syl |  |-  ( ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) /\ x e. RR ) -> ( A. z e. ran F z <_ x <-> A. y e. X ( F ` y ) <_ x ) ) | 
						
							| 158 | 152 157 | sylibd |  |-  ( ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) /\ x e. RR ) -> ( A. w e. v sup ( w , RR* , < ) <_ x -> A. y e. X ( F ` y ) <_ x ) ) | 
						
							| 159 | 158 | reximdva |  |-  ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) -> ( E. x e. RR A. w e. v sup ( w , RR* , < ) <_ x -> E. x e. RR A. y e. X ( F ` y ) <_ x ) ) | 
						
							| 160 | 121 159 | mpd |  |-  ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) -> E. x e. RR A. y e. X ( F ` y ) <_ x ) | 
						
							| 161 | 68 160 | rexlimddv |  |-  ( ph -> E. x e. RR A. y e. X ( F ` y ) <_ x ) |