Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1006.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
2 |
|
bnj1006.2 |
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
3 |
|
bnj1006.3 |
|- ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) ) |
4 |
|
bnj1006.4 |
|- ( th <-> ( R _FrSe A /\ X e. A /\ y e. _trCl ( X , A , R ) /\ z e. _pred ( y , A , R ) ) ) |
5 |
|
bnj1006.5 |
|- ( ta <-> ( m e. _om /\ n = suc m /\ p = suc n ) ) |
6 |
|
bnj1006.6 |
|- ( et <-> ( i e. n /\ y e. ( f ` i ) ) ) |
7 |
|
bnj1006.7 |
|- ( ph' <-> [. p / n ]. ph ) |
8 |
|
bnj1006.8 |
|- ( ps' <-> [. p / n ]. ps ) |
9 |
|
bnj1006.9 |
|- ( ch' <-> [. p / n ]. ch ) |
10 |
|
bnj1006.10 |
|- ( ph" <-> [. G / f ]. ph' ) |
11 |
|
bnj1006.11 |
|- ( ps" <-> [. G / f ]. ps' ) |
12 |
|
bnj1006.12 |
|- ( ch" <-> [. G / f ]. ch' ) |
13 |
|
bnj1006.13 |
|- D = ( _om \ { (/) } ) |
14 |
|
bnj1006.15 |
|- C = U_ y e. ( f ` m ) _pred ( y , A , R ) |
15 |
|
bnj1006.16 |
|- G = ( f u. { <. n , C >. } ) |
16 |
|
bnj1006.28 |
|- ( ( th /\ ch /\ ta /\ et ) -> ( ch" /\ i e. _om /\ suc i e. p ) ) |
17 |
6
|
simprbi |
|- ( et -> y e. ( f ` i ) ) |
18 |
17
|
bnj708 |
|- ( ( th /\ ch /\ ta /\ et ) -> y e. ( f ` i ) ) |
19 |
|
bnj253 |
|- ( ( R _FrSe A /\ X e. A /\ y e. _trCl ( X , A , R ) /\ z e. _pred ( y , A , R ) ) <-> ( ( R _FrSe A /\ X e. A ) /\ y e. _trCl ( X , A , R ) /\ z e. _pred ( y , A , R ) ) ) |
20 |
19
|
simp1bi |
|- ( ( R _FrSe A /\ X e. A /\ y e. _trCl ( X , A , R ) /\ z e. _pred ( y , A , R ) ) -> ( R _FrSe A /\ X e. A ) ) |
21 |
4 20
|
sylbi |
|- ( th -> ( R _FrSe A /\ X e. A ) ) |
22 |
21
|
bnj705 |
|- ( ( th /\ ch /\ ta /\ et ) -> ( R _FrSe A /\ X e. A ) ) |
23 |
|
bnj643 |
|- ( ( th /\ ch /\ ta /\ et ) -> ch ) |
24 |
|
3simpc |
|- ( ( m e. _om /\ n = suc m /\ p = suc n ) -> ( n = suc m /\ p = suc n ) ) |
25 |
5 24
|
sylbi |
|- ( ta -> ( n = suc m /\ p = suc n ) ) |
26 |
25
|
bnj707 |
|- ( ( th /\ ch /\ ta /\ et ) -> ( n = suc m /\ p = suc n ) ) |
27 |
|
3anass |
|- ( ( ch /\ n = suc m /\ p = suc n ) <-> ( ch /\ ( n = suc m /\ p = suc n ) ) ) |
28 |
23 26 27
|
sylanbrc |
|- ( ( th /\ ch /\ ta /\ et ) -> ( ch /\ n = suc m /\ p = suc n ) ) |
29 |
|
biid |
|- ( ( f Fn n /\ ph /\ ps ) <-> ( f Fn n /\ ph /\ ps ) ) |
30 |
|
biid |
|- ( ( n e. D /\ p = suc n /\ m e. n ) <-> ( n e. D /\ p = suc n /\ m e. n ) ) |
31 |
1 2 3 13 14 29 30
|
bnj969 |
|- ( ( ( R _FrSe A /\ X e. A ) /\ ( ch /\ n = suc m /\ p = suc n ) ) -> C e. _V ) |
32 |
22 28 31
|
syl2anc |
|- ( ( th /\ ch /\ ta /\ et ) -> C e. _V ) |
33 |
3
|
bnj1235 |
|- ( ch -> f Fn n ) |
34 |
33
|
bnj706 |
|- ( ( th /\ ch /\ ta /\ et ) -> f Fn n ) |
35 |
5
|
simp3bi |
|- ( ta -> p = suc n ) |
36 |
35
|
bnj707 |
|- ( ( th /\ ch /\ ta /\ et ) -> p = suc n ) |
37 |
6
|
simplbi |
|- ( et -> i e. n ) |
38 |
37
|
bnj708 |
|- ( ( th /\ ch /\ ta /\ et ) -> i e. n ) |
39 |
32 34 36 38
|
bnj951 |
|- ( ( th /\ ch /\ ta /\ et ) -> ( C e. _V /\ f Fn n /\ p = suc n /\ i e. n ) ) |
40 |
15
|
bnj945 |
|- ( ( C e. _V /\ f Fn n /\ p = suc n /\ i e. n ) -> ( G ` i ) = ( f ` i ) ) |
41 |
39 40
|
syl |
|- ( ( th /\ ch /\ ta /\ et ) -> ( G ` i ) = ( f ` i ) ) |
42 |
18 41
|
eleqtrrd |
|- ( ( th /\ ch /\ ta /\ et ) -> y e. ( G ` i ) ) |
43 |
16
|
anim1i |
|- ( ( ( th /\ ch /\ ta /\ et ) /\ y e. ( G ` i ) ) -> ( ( ch" /\ i e. _om /\ suc i e. p ) /\ y e. ( G ` i ) ) ) |
44 |
|
df-bnj17 |
|- ( ( ch" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) <-> ( ( ch" /\ i e. _om /\ suc i e. p ) /\ y e. ( G ` i ) ) ) |
45 |
43 44
|
sylibr |
|- ( ( ( th /\ ch /\ ta /\ et ) /\ y e. ( G ` i ) ) -> ( ch" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) ) |
46 |
1 2 3 7 8 9 10 11 12 14 15
|
bnj999 |
|- ( ( ch" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) -> _pred ( y , A , R ) C_ ( G ` suc i ) ) |
47 |
45 46
|
syl |
|- ( ( ( th /\ ch /\ ta /\ et ) /\ y e. ( G ` i ) ) -> _pred ( y , A , R ) C_ ( G ` suc i ) ) |
48 |
42 47
|
mpdan |
|- ( ( th /\ ch /\ ta /\ et ) -> _pred ( y , A , R ) C_ ( G ` suc i ) ) |