| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1006.1 | 
							 |-  ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1006.2 | 
							 |-  ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1006.3 | 
							 |-  ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj1006.4 | 
							 |-  ( th <-> ( R _FrSe A /\ X e. A /\ y e. _trCl ( X , A , R ) /\ z e. _pred ( y , A , R ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj1006.5 | 
							 |-  ( ta <-> ( m e. _om /\ n = suc m /\ p = suc n ) )  | 
						
						
							| 6 | 
							
								
							 | 
							bnj1006.6 | 
							 |-  ( et <-> ( i e. n /\ y e. ( f ` i ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							bnj1006.7 | 
							 |-  ( ph' <-> [. p / n ]. ph )  | 
						
						
							| 8 | 
							
								
							 | 
							bnj1006.8 | 
							 |-  ( ps' <-> [. p / n ]. ps )  | 
						
						
							| 9 | 
							
								
							 | 
							bnj1006.9 | 
							 |-  ( ch' <-> [. p / n ]. ch )  | 
						
						
							| 10 | 
							
								
							 | 
							bnj1006.10 | 
							 |-  ( ph" <-> [. G / f ]. ph' )  | 
						
						
							| 11 | 
							
								
							 | 
							bnj1006.11 | 
							 |-  ( ps" <-> [. G / f ]. ps' )  | 
						
						
							| 12 | 
							
								
							 | 
							bnj1006.12 | 
							 |-  ( ch" <-> [. G / f ]. ch' )  | 
						
						
							| 13 | 
							
								
							 | 
							bnj1006.13 | 
							 |-  D = ( _om \ { (/) } ) | 
						
						
							| 14 | 
							
								
							 | 
							bnj1006.15 | 
							 |-  C = U_ y e. ( f ` m ) _pred ( y , A , R )  | 
						
						
							| 15 | 
							
								
							 | 
							bnj1006.16 | 
							 |-  G = ( f u. { <. n , C >. } ) | 
						
						
							| 16 | 
							
								
							 | 
							bnj1006.28 | 
							 |-  ( ( th /\ ch /\ ta /\ et ) -> ( ch" /\ i e. _om /\ suc i e. p ) )  | 
						
						
							| 17 | 
							
								6
							 | 
							simprbi | 
							 |-  ( et -> y e. ( f ` i ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							bnj708 | 
							 |-  ( ( th /\ ch /\ ta /\ et ) -> y e. ( f ` i ) )  | 
						
						
							| 19 | 
							
								
							 | 
							bnj253 | 
							 |-  ( ( R _FrSe A /\ X e. A /\ y e. _trCl ( X , A , R ) /\ z e. _pred ( y , A , R ) ) <-> ( ( R _FrSe A /\ X e. A ) /\ y e. _trCl ( X , A , R ) /\ z e. _pred ( y , A , R ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							simp1bi | 
							 |-  ( ( R _FrSe A /\ X e. A /\ y e. _trCl ( X , A , R ) /\ z e. _pred ( y , A , R ) ) -> ( R _FrSe A /\ X e. A ) )  | 
						
						
							| 21 | 
							
								4 20
							 | 
							sylbi | 
							 |-  ( th -> ( R _FrSe A /\ X e. A ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							bnj705 | 
							 |-  ( ( th /\ ch /\ ta /\ et ) -> ( R _FrSe A /\ X e. A ) )  | 
						
						
							| 23 | 
							
								
							 | 
							bnj643 | 
							 |-  ( ( th /\ ch /\ ta /\ et ) -> ch )  | 
						
						
							| 24 | 
							
								
							 | 
							3simpc | 
							 |-  ( ( m e. _om /\ n = suc m /\ p = suc n ) -> ( n = suc m /\ p = suc n ) )  | 
						
						
							| 25 | 
							
								5 24
							 | 
							sylbi | 
							 |-  ( ta -> ( n = suc m /\ p = suc n ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							bnj707 | 
							 |-  ( ( th /\ ch /\ ta /\ et ) -> ( n = suc m /\ p = suc n ) )  | 
						
						
							| 27 | 
							
								
							 | 
							3anass | 
							 |-  ( ( ch /\ n = suc m /\ p = suc n ) <-> ( ch /\ ( n = suc m /\ p = suc n ) ) )  | 
						
						
							| 28 | 
							
								23 26 27
							 | 
							sylanbrc | 
							 |-  ( ( th /\ ch /\ ta /\ et ) -> ( ch /\ n = suc m /\ p = suc n ) )  | 
						
						
							| 29 | 
							
								
							 | 
							biid | 
							 |-  ( ( f Fn n /\ ph /\ ps ) <-> ( f Fn n /\ ph /\ ps ) )  | 
						
						
							| 30 | 
							
								
							 | 
							biid | 
							 |-  ( ( n e. D /\ p = suc n /\ m e. n ) <-> ( n e. D /\ p = suc n /\ m e. n ) )  | 
						
						
							| 31 | 
							
								1 2 3 13 14 29 30
							 | 
							bnj969 | 
							 |-  ( ( ( R _FrSe A /\ X e. A ) /\ ( ch /\ n = suc m /\ p = suc n ) ) -> C e. _V )  | 
						
						
							| 32 | 
							
								22 28 31
							 | 
							syl2anc | 
							 |-  ( ( th /\ ch /\ ta /\ et ) -> C e. _V )  | 
						
						
							| 33 | 
							
								3
							 | 
							bnj1235 | 
							 |-  ( ch -> f Fn n )  | 
						
						
							| 34 | 
							
								33
							 | 
							bnj706 | 
							 |-  ( ( th /\ ch /\ ta /\ et ) -> f Fn n )  | 
						
						
							| 35 | 
							
								5
							 | 
							simp3bi | 
							 |-  ( ta -> p = suc n )  | 
						
						
							| 36 | 
							
								35
							 | 
							bnj707 | 
							 |-  ( ( th /\ ch /\ ta /\ et ) -> p = suc n )  | 
						
						
							| 37 | 
							
								6
							 | 
							simplbi | 
							 |-  ( et -> i e. n )  | 
						
						
							| 38 | 
							
								37
							 | 
							bnj708 | 
							 |-  ( ( th /\ ch /\ ta /\ et ) -> i e. n )  | 
						
						
							| 39 | 
							
								32 34 36 38
							 | 
							bnj951 | 
							 |-  ( ( th /\ ch /\ ta /\ et ) -> ( C e. _V /\ f Fn n /\ p = suc n /\ i e. n ) )  | 
						
						
							| 40 | 
							
								15
							 | 
							bnj945 | 
							 |-  ( ( C e. _V /\ f Fn n /\ p = suc n /\ i e. n ) -> ( G ` i ) = ( f ` i ) )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							syl | 
							 |-  ( ( th /\ ch /\ ta /\ et ) -> ( G ` i ) = ( f ` i ) )  | 
						
						
							| 42 | 
							
								18 41
							 | 
							eleqtrrd | 
							 |-  ( ( th /\ ch /\ ta /\ et ) -> y e. ( G ` i ) )  | 
						
						
							| 43 | 
							
								16
							 | 
							anim1i | 
							 |-  ( ( ( th /\ ch /\ ta /\ et ) /\ y e. ( G ` i ) ) -> ( ( ch" /\ i e. _om /\ suc i e. p ) /\ y e. ( G ` i ) ) )  | 
						
						
							| 44 | 
							
								
							 | 
							df-bnj17 | 
							 |-  ( ( ch" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) <-> ( ( ch" /\ i e. _om /\ suc i e. p ) /\ y e. ( G ` i ) ) )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							sylibr | 
							 |-  ( ( ( th /\ ch /\ ta /\ et ) /\ y e. ( G ` i ) ) -> ( ch" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) )  | 
						
						
							| 46 | 
							
								1 2 3 7 8 9 10 11 12 14 15
							 | 
							bnj999 | 
							 |-  ( ( ch" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) -> _pred ( y , A , R ) C_ ( G ` suc i ) )  | 
						
						
							| 47 | 
							
								45 46
							 | 
							syl | 
							 |-  ( ( ( th /\ ch /\ ta /\ et ) /\ y e. ( G ` i ) ) -> _pred ( y , A , R ) C_ ( G ` suc i ) )  | 
						
						
							| 48 | 
							
								42 47
							 | 
							mpdan | 
							 |-  ( ( th /\ ch /\ ta /\ et ) -> _pred ( y , A , R ) C_ ( G ` suc i ) )  |