Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1014.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
2 |
|
bnj1014.2 |
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
3 |
|
bnj1014.13 |
|- D = ( _om \ { (/) } ) |
4 |
|
bnj1014.14 |
|- B = { f | E. n e. D ( f Fn n /\ ph /\ ps ) } |
5 |
|
nfcv |
|- F/_ i D |
6 |
1 2
|
bnj911 |
|- ( ( f Fn n /\ ph /\ ps ) -> A. i ( f Fn n /\ ph /\ ps ) ) |
7 |
6
|
nf5i |
|- F/ i ( f Fn n /\ ph /\ ps ) |
8 |
5 7
|
nfrex |
|- F/ i E. n e. D ( f Fn n /\ ph /\ ps ) |
9 |
8
|
nfab |
|- F/_ i { f | E. n e. D ( f Fn n /\ ph /\ ps ) } |
10 |
4 9
|
nfcxfr |
|- F/_ i B |
11 |
10
|
nfcri |
|- F/ i g e. B |
12 |
|
nfv |
|- F/ i j e. dom g |
13 |
11 12
|
nfan |
|- F/ i ( g e. B /\ j e. dom g ) |
14 |
|
nfv |
|- F/ i ( g ` j ) C_ _trCl ( X , A , R ) |
15 |
13 14
|
nfim |
|- F/ i ( ( g e. B /\ j e. dom g ) -> ( g ` j ) C_ _trCl ( X , A , R ) ) |
16 |
15
|
nf5ri |
|- ( ( ( g e. B /\ j e. dom g ) -> ( g ` j ) C_ _trCl ( X , A , R ) ) -> A. i ( ( g e. B /\ j e. dom g ) -> ( g ` j ) C_ _trCl ( X , A , R ) ) ) |
17 |
|
eleq1w |
|- ( j = i -> ( j e. dom g <-> i e. dom g ) ) |
18 |
17
|
anbi2d |
|- ( j = i -> ( ( g e. B /\ j e. dom g ) <-> ( g e. B /\ i e. dom g ) ) ) |
19 |
|
fveq2 |
|- ( j = i -> ( g ` j ) = ( g ` i ) ) |
20 |
19
|
sseq1d |
|- ( j = i -> ( ( g ` j ) C_ _trCl ( X , A , R ) <-> ( g ` i ) C_ _trCl ( X , A , R ) ) ) |
21 |
18 20
|
imbi12d |
|- ( j = i -> ( ( ( g e. B /\ j e. dom g ) -> ( g ` j ) C_ _trCl ( X , A , R ) ) <-> ( ( g e. B /\ i e. dom g ) -> ( g ` i ) C_ _trCl ( X , A , R ) ) ) ) |
22 |
21
|
equcoms |
|- ( i = j -> ( ( ( g e. B /\ j e. dom g ) -> ( g ` j ) C_ _trCl ( X , A , R ) ) <-> ( ( g e. B /\ i e. dom g ) -> ( g ` i ) C_ _trCl ( X , A , R ) ) ) ) |
23 |
4
|
bnj1317 |
|- ( g e. B -> A. f g e. B ) |
24 |
23
|
nf5i |
|- F/ f g e. B |
25 |
|
nfv |
|- F/ f i e. dom g |
26 |
24 25
|
nfan |
|- F/ f ( g e. B /\ i e. dom g ) |
27 |
|
nfv |
|- F/ f ( g ` i ) C_ _trCl ( X , A , R ) |
28 |
26 27
|
nfim |
|- F/ f ( ( g e. B /\ i e. dom g ) -> ( g ` i ) C_ _trCl ( X , A , R ) ) |
29 |
|
eleq1w |
|- ( f = g -> ( f e. B <-> g e. B ) ) |
30 |
|
dmeq |
|- ( f = g -> dom f = dom g ) |
31 |
30
|
eleq2d |
|- ( f = g -> ( i e. dom f <-> i e. dom g ) ) |
32 |
29 31
|
anbi12d |
|- ( f = g -> ( ( f e. B /\ i e. dom f ) <-> ( g e. B /\ i e. dom g ) ) ) |
33 |
|
fveq1 |
|- ( f = g -> ( f ` i ) = ( g ` i ) ) |
34 |
33
|
sseq1d |
|- ( f = g -> ( ( f ` i ) C_ _trCl ( X , A , R ) <-> ( g ` i ) C_ _trCl ( X , A , R ) ) ) |
35 |
32 34
|
imbi12d |
|- ( f = g -> ( ( ( f e. B /\ i e. dom f ) -> ( f ` i ) C_ _trCl ( X , A , R ) ) <-> ( ( g e. B /\ i e. dom g ) -> ( g ` i ) C_ _trCl ( X , A , R ) ) ) ) |
36 |
|
ssiun2 |
|- ( i e. dom f -> ( f ` i ) C_ U_ i e. dom f ( f ` i ) ) |
37 |
|
ssiun2 |
|- ( f e. B -> U_ i e. dom f ( f ` i ) C_ U_ f e. B U_ i e. dom f ( f ` i ) ) |
38 |
1 2 3 4
|
bnj882 |
|- _trCl ( X , A , R ) = U_ f e. B U_ i e. dom f ( f ` i ) |
39 |
37 38
|
sseqtrrdi |
|- ( f e. B -> U_ i e. dom f ( f ` i ) C_ _trCl ( X , A , R ) ) |
40 |
36 39
|
sylan9ssr |
|- ( ( f e. B /\ i e. dom f ) -> ( f ` i ) C_ _trCl ( X , A , R ) ) |
41 |
28 35 40
|
chvarfv |
|- ( ( g e. B /\ i e. dom g ) -> ( g ` i ) C_ _trCl ( X , A , R ) ) |
42 |
22 41
|
speivw |
|- E. i ( ( g e. B /\ j e. dom g ) -> ( g ` j ) C_ _trCl ( X , A , R ) ) |
43 |
16 42
|
bnj1131 |
|- ( ( g e. B /\ j e. dom g ) -> ( g ` j ) C_ _trCl ( X , A , R ) ) |