| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1014.1 | 
							 |-  ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1014.2 | 
							 |-  ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1014.13 | 
							 |-  D = ( _om \ { (/) } ) | 
						
						
							| 4 | 
							
								
							 | 
							bnj1014.14 | 
							 |-  B = { f | E. n e. D ( f Fn n /\ ph /\ ps ) } | 
						
						
							| 5 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ i D  | 
						
						
							| 6 | 
							
								1 2
							 | 
							bnj911 | 
							 |-  ( ( f Fn n /\ ph /\ ps ) -> A. i ( f Fn n /\ ph /\ ps ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							nf5i | 
							 |-  F/ i ( f Fn n /\ ph /\ ps )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							nfrexw | 
							 |-  F/ i E. n e. D ( f Fn n /\ ph /\ ps )  | 
						
						
							| 9 | 
							
								8
							 | 
							nfab | 
							 |-  F/_ i { f | E. n e. D ( f Fn n /\ ph /\ ps ) } | 
						
						
							| 10 | 
							
								4 9
							 | 
							nfcxfr | 
							 |-  F/_ i B  | 
						
						
							| 11 | 
							
								10
							 | 
							nfcri | 
							 |-  F/ i g e. B  | 
						
						
							| 12 | 
							
								
							 | 
							nfv | 
							 |-  F/ i j e. dom g  | 
						
						
							| 13 | 
							
								11 12
							 | 
							nfan | 
							 |-  F/ i ( g e. B /\ j e. dom g )  | 
						
						
							| 14 | 
							
								
							 | 
							nfv | 
							 |-  F/ i ( g ` j ) C_ _trCl ( X , A , R )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							nfim | 
							 |-  F/ i ( ( g e. B /\ j e. dom g ) -> ( g ` j ) C_ _trCl ( X , A , R ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							nf5ri | 
							 |-  ( ( ( g e. B /\ j e. dom g ) -> ( g ` j ) C_ _trCl ( X , A , R ) ) -> A. i ( ( g e. B /\ j e. dom g ) -> ( g ` j ) C_ _trCl ( X , A , R ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							eleq1w | 
							 |-  ( j = i -> ( j e. dom g <-> i e. dom g ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							anbi2d | 
							 |-  ( j = i -> ( ( g e. B /\ j e. dom g ) <-> ( g e. B /\ i e. dom g ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							fveq2 | 
							 |-  ( j = i -> ( g ` j ) = ( g ` i ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							sseq1d | 
							 |-  ( j = i -> ( ( g ` j ) C_ _trCl ( X , A , R ) <-> ( g ` i ) C_ _trCl ( X , A , R ) ) )  | 
						
						
							| 21 | 
							
								18 20
							 | 
							imbi12d | 
							 |-  ( j = i -> ( ( ( g e. B /\ j e. dom g ) -> ( g ` j ) C_ _trCl ( X , A , R ) ) <-> ( ( g e. B /\ i e. dom g ) -> ( g ` i ) C_ _trCl ( X , A , R ) ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							equcoms | 
							 |-  ( i = j -> ( ( ( g e. B /\ j e. dom g ) -> ( g ` j ) C_ _trCl ( X , A , R ) ) <-> ( ( g e. B /\ i e. dom g ) -> ( g ` i ) C_ _trCl ( X , A , R ) ) ) )  | 
						
						
							| 23 | 
							
								4
							 | 
							bnj1317 | 
							 |-  ( g e. B -> A. f g e. B )  | 
						
						
							| 24 | 
							
								23
							 | 
							nf5i | 
							 |-  F/ f g e. B  | 
						
						
							| 25 | 
							
								
							 | 
							nfv | 
							 |-  F/ f i e. dom g  | 
						
						
							| 26 | 
							
								24 25
							 | 
							nfan | 
							 |-  F/ f ( g e. B /\ i e. dom g )  | 
						
						
							| 27 | 
							
								
							 | 
							nfv | 
							 |-  F/ f ( g ` i ) C_ _trCl ( X , A , R )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							nfim | 
							 |-  F/ f ( ( g e. B /\ i e. dom g ) -> ( g ` i ) C_ _trCl ( X , A , R ) )  | 
						
						
							| 29 | 
							
								
							 | 
							eleq1w | 
							 |-  ( f = g -> ( f e. B <-> g e. B ) )  | 
						
						
							| 30 | 
							
								
							 | 
							dmeq | 
							 |-  ( f = g -> dom f = dom g )  | 
						
						
							| 31 | 
							
								30
							 | 
							eleq2d | 
							 |-  ( f = g -> ( i e. dom f <-> i e. dom g ) )  | 
						
						
							| 32 | 
							
								29 31
							 | 
							anbi12d | 
							 |-  ( f = g -> ( ( f e. B /\ i e. dom f ) <-> ( g e. B /\ i e. dom g ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							fveq1 | 
							 |-  ( f = g -> ( f ` i ) = ( g ` i ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							sseq1d | 
							 |-  ( f = g -> ( ( f ` i ) C_ _trCl ( X , A , R ) <-> ( g ` i ) C_ _trCl ( X , A , R ) ) )  | 
						
						
							| 35 | 
							
								32 34
							 | 
							imbi12d | 
							 |-  ( f = g -> ( ( ( f e. B /\ i e. dom f ) -> ( f ` i ) C_ _trCl ( X , A , R ) ) <-> ( ( g e. B /\ i e. dom g ) -> ( g ` i ) C_ _trCl ( X , A , R ) ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							ssiun2 | 
							 |-  ( i e. dom f -> ( f ` i ) C_ U_ i e. dom f ( f ` i ) )  | 
						
						
							| 37 | 
							
								
							 | 
							ssiun2 | 
							 |-  ( f e. B -> U_ i e. dom f ( f ` i ) C_ U_ f e. B U_ i e. dom f ( f ` i ) )  | 
						
						
							| 38 | 
							
								1 2 3 4
							 | 
							bnj882 | 
							 |-  _trCl ( X , A , R ) = U_ f e. B U_ i e. dom f ( f ` i )  | 
						
						
							| 39 | 
							
								37 38
							 | 
							sseqtrrdi | 
							 |-  ( f e. B -> U_ i e. dom f ( f ` i ) C_ _trCl ( X , A , R ) )  | 
						
						
							| 40 | 
							
								36 39
							 | 
							sylan9ssr | 
							 |-  ( ( f e. B /\ i e. dom f ) -> ( f ` i ) C_ _trCl ( X , A , R ) )  | 
						
						
							| 41 | 
							
								28 35 40
							 | 
							chvarfv | 
							 |-  ( ( g e. B /\ i e. dom g ) -> ( g ` i ) C_ _trCl ( X , A , R ) )  | 
						
						
							| 42 | 
							
								22 41
							 | 
							speivw | 
							 |-  E. i ( ( g e. B /\ j e. dom g ) -> ( g ` j ) C_ _trCl ( X , A , R ) )  | 
						
						
							| 43 | 
							
								16 42
							 | 
							bnj1131 | 
							 |-  ( ( g e. B /\ j e. dom g ) -> ( g ` j ) C_ _trCl ( X , A , R ) )  |