| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1015.1 | 
							 |-  ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1015.2 | 
							 |-  ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1015.13 | 
							 |-  D = ( _om \ { (/) } ) | 
						
						
							| 4 | 
							
								
							 | 
							bnj1015.14 | 
							 |-  B = { f | E. n e. D ( f Fn n /\ ph /\ ps ) } | 
						
						
							| 5 | 
							
								
							 | 
							bnj1015.15 | 
							 |-  G e. V  | 
						
						
							| 6 | 
							
								
							 | 
							bnj1015.16 | 
							 |-  J e. V  | 
						
						
							| 7 | 
							
								6
							 | 
							elexi | 
							 |-  J e. _V  | 
						
						
							| 8 | 
							
								
							 | 
							eleq1 | 
							 |-  ( j = J -> ( j e. dom G <-> J e. dom G ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							anbi2d | 
							 |-  ( j = J -> ( ( G e. B /\ j e. dom G ) <-> ( G e. B /\ J e. dom G ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							fveq2 | 
							 |-  ( j = J -> ( G ` j ) = ( G ` J ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							sseq1d | 
							 |-  ( j = J -> ( ( G ` j ) C_ _trCl ( X , A , R ) <-> ( G ` J ) C_ _trCl ( X , A , R ) ) )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							imbi12d | 
							 |-  ( j = J -> ( ( ( G e. B /\ j e. dom G ) -> ( G ` j ) C_ _trCl ( X , A , R ) ) <-> ( ( G e. B /\ J e. dom G ) -> ( G ` J ) C_ _trCl ( X , A , R ) ) ) )  | 
						
						
							| 13 | 
							
								5
							 | 
							elexi | 
							 |-  G e. _V  | 
						
						
							| 14 | 
							
								
							 | 
							eleq1 | 
							 |-  ( g = G -> ( g e. B <-> G e. B ) )  | 
						
						
							| 15 | 
							
								
							 | 
							dmeq | 
							 |-  ( g = G -> dom g = dom G )  | 
						
						
							| 16 | 
							
								15
							 | 
							eleq2d | 
							 |-  ( g = G -> ( j e. dom g <-> j e. dom G ) )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							anbi12d | 
							 |-  ( g = G -> ( ( g e. B /\ j e. dom g ) <-> ( G e. B /\ j e. dom G ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							fveq1 | 
							 |-  ( g = G -> ( g ` j ) = ( G ` j ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							sseq1d | 
							 |-  ( g = G -> ( ( g ` j ) C_ _trCl ( X , A , R ) <-> ( G ` j ) C_ _trCl ( X , A , R ) ) )  | 
						
						
							| 20 | 
							
								17 19
							 | 
							imbi12d | 
							 |-  ( g = G -> ( ( ( g e. B /\ j e. dom g ) -> ( g ` j ) C_ _trCl ( X , A , R ) ) <-> ( ( G e. B /\ j e. dom G ) -> ( G ` j ) C_ _trCl ( X , A , R ) ) ) )  | 
						
						
							| 21 | 
							
								1 2 3 4
							 | 
							bnj1014 | 
							 |-  ( ( g e. B /\ j e. dom g ) -> ( g ` j ) C_ _trCl ( X , A , R ) )  | 
						
						
							| 22 | 
							
								13 20 21
							 | 
							vtocl | 
							 |-  ( ( G e. B /\ j e. dom G ) -> ( G ` j ) C_ _trCl ( X , A , R ) )  | 
						
						
							| 23 | 
							
								7 12 22
							 | 
							vtocl | 
							 |-  ( ( G e. B /\ J e. dom G ) -> ( G ` J ) C_ _trCl ( X , A , R ) )  |