Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1018.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
2 |
|
bnj1018.2 |
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
3 |
|
bnj1018.3 |
|- ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) ) |
4 |
|
bnj1018.4 |
|- ( th <-> ( R _FrSe A /\ X e. A /\ y e. _trCl ( X , A , R ) /\ z e. _pred ( y , A , R ) ) ) |
5 |
|
bnj1018.5 |
|- ( ta <-> ( m e. _om /\ n = suc m /\ p = suc n ) ) |
6 |
|
bnj1018.7 |
|- ( ph' <-> [. p / n ]. ph ) |
7 |
|
bnj1018.8 |
|- ( ps' <-> [. p / n ]. ps ) |
8 |
|
bnj1018.9 |
|- ( ch' <-> [. p / n ]. ch ) |
9 |
|
bnj1018.10 |
|- ( ph" <-> [. G / f ]. ph' ) |
10 |
|
bnj1018.11 |
|- ( ps" <-> [. G / f ]. ps' ) |
11 |
|
bnj1018.12 |
|- ( ch" <-> [. G / f ]. ch' ) |
12 |
|
bnj1018.13 |
|- D = ( _om \ { (/) } ) |
13 |
|
bnj1018.14 |
|- B = { f | E. n e. D ( f Fn n /\ ph /\ ps ) } |
14 |
|
bnj1018.15 |
|- C = U_ y e. ( f ` m ) _pred ( y , A , R ) |
15 |
|
bnj1018.16 |
|- G = ( f u. { <. n , C >. } ) |
16 |
|
bnj1018.26 |
|- ( ch" <-> ( p e. D /\ G Fn p /\ ph" /\ ps" ) ) |
17 |
|
bnj1018.29 |
|- ( ( th /\ ch /\ ta /\ et ) -> ch" ) |
18 |
|
bnj1018.30 |
|- ( ( th /\ ch /\ ta /\ et ) -> ( ch" /\ i e. _om /\ suc i e. p ) ) |
19 |
|
df-bnj17 |
|- ( ( th /\ ch /\ et /\ E. p ta ) <-> ( ( th /\ ch /\ et ) /\ E. p ta ) ) |
20 |
|
bnj258 |
|- ( ( th /\ ch /\ ta /\ et ) <-> ( ( th /\ ch /\ et ) /\ ta ) ) |
21 |
20 17
|
sylbir |
|- ( ( ( th /\ ch /\ et ) /\ ta ) -> ch" ) |
22 |
21
|
ex |
|- ( ( th /\ ch /\ et ) -> ( ta -> ch" ) ) |
23 |
22
|
eximdv |
|- ( ( th /\ ch /\ et ) -> ( E. p ta -> E. p ch" ) ) |
24 |
3 8 11 13 15
|
bnj985v |
|- ( G e. B <-> E. p ch" ) |
25 |
23 24
|
syl6ibr |
|- ( ( th /\ ch /\ et ) -> ( E. p ta -> G e. B ) ) |
26 |
25
|
imp |
|- ( ( ( th /\ ch /\ et ) /\ E. p ta ) -> G e. B ) |
27 |
19 26
|
sylbi |
|- ( ( th /\ ch /\ et /\ E. p ta ) -> G e. B ) |
28 |
|
bnj1019 |
|- ( E. p ( th /\ ch /\ ta /\ et ) <-> ( th /\ ch /\ et /\ E. p ta ) ) |
29 |
18
|
simp3d |
|- ( ( th /\ ch /\ ta /\ et ) -> suc i e. p ) |
30 |
16
|
bnj1235 |
|- ( ch" -> G Fn p ) |
31 |
|
fndm |
|- ( G Fn p -> dom G = p ) |
32 |
17 30 31
|
3syl |
|- ( ( th /\ ch /\ ta /\ et ) -> dom G = p ) |
33 |
29 32
|
eleqtrrd |
|- ( ( th /\ ch /\ ta /\ et ) -> suc i e. dom G ) |
34 |
33
|
exlimiv |
|- ( E. p ( th /\ ch /\ ta /\ et ) -> suc i e. dom G ) |
35 |
28 34
|
sylbir |
|- ( ( th /\ ch /\ et /\ E. p ta ) -> suc i e. dom G ) |
36 |
15
|
bnj918 |
|- G e. _V |
37 |
|
vex |
|- i e. _V |
38 |
37
|
sucex |
|- suc i e. _V |
39 |
1 2 12 13 36 38
|
bnj1015 |
|- ( ( G e. B /\ suc i e. dom G ) -> ( G ` suc i ) C_ _trCl ( X , A , R ) ) |
40 |
27 35 39
|
syl2anc |
|- ( ( th /\ ch /\ et /\ E. p ta ) -> ( G ` suc i ) C_ _trCl ( X , A , R ) ) |