Metamath Proof Explorer


Theorem bnj1019

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj1019
|- ( E. p ( th /\ ch /\ ta /\ et ) <-> ( th /\ ch /\ et /\ E. p ta ) )

Proof

Step Hyp Ref Expression
1 19.42v
 |-  ( E. p ( ( th /\ ch /\ et ) /\ ta ) <-> ( ( th /\ ch /\ et ) /\ E. p ta ) )
2 bnj258
 |-  ( ( th /\ ch /\ ta /\ et ) <-> ( ( th /\ ch /\ et ) /\ ta ) )
3 2 exbii
 |-  ( E. p ( th /\ ch /\ ta /\ et ) <-> E. p ( ( th /\ ch /\ et ) /\ ta ) )
4 df-bnj17
 |-  ( ( th /\ ch /\ et /\ E. p ta ) <-> ( ( th /\ ch /\ et ) /\ E. p ta ) )
5 1 3 4 3bitr4i
 |-  ( E. p ( th /\ ch /\ ta /\ et ) <-> ( th /\ ch /\ et /\ E. p ta ) )