Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bnj1019 | |- ( E. p ( th /\ ch /\ ta /\ et ) <-> ( th /\ ch /\ et /\ E. p ta ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.42v | |- ( E. p ( ( th /\ ch /\ et ) /\ ta ) <-> ( ( th /\ ch /\ et ) /\ E. p ta ) ) |
|
2 | bnj258 | |- ( ( th /\ ch /\ ta /\ et ) <-> ( ( th /\ ch /\ et ) /\ ta ) ) |
|
3 | 2 | exbii | |- ( E. p ( th /\ ch /\ ta /\ et ) <-> E. p ( ( th /\ ch /\ et ) /\ ta ) ) |
4 | df-bnj17 | |- ( ( th /\ ch /\ et /\ E. p ta ) <-> ( ( th /\ ch /\ et ) /\ E. p ta ) ) |
|
5 | 1 3 4 | 3bitr4i | |- ( E. p ( th /\ ch /\ ta /\ et ) <-> ( th /\ ch /\ et /\ E. p ta ) ) |