| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1020.1 | 
							 |-  ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1020.2 | 
							 |-  ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1020.3 | 
							 |-  ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj1020.4 | 
							 |-  ( th <-> ( R _FrSe A /\ X e. A /\ y e. _trCl ( X , A , R ) /\ z e. _pred ( y , A , R ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj1020.5 | 
							 |-  ( ta <-> ( m e. _om /\ n = suc m /\ p = suc n ) )  | 
						
						
							| 6 | 
							
								
							 | 
							bnj1020.6 | 
							 |-  ( et <-> ( i e. n /\ y e. ( f ` i ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							bnj1020.7 | 
							 |-  ( ph' <-> [. p / n ]. ph )  | 
						
						
							| 8 | 
							
								
							 | 
							bnj1020.8 | 
							 |-  ( ps' <-> [. p / n ]. ps )  | 
						
						
							| 9 | 
							
								
							 | 
							bnj1020.9 | 
							 |-  ( ch' <-> [. p / n ]. ch )  | 
						
						
							| 10 | 
							
								
							 | 
							bnj1020.10 | 
							 |-  ( ph" <-> [. G / f ]. ph' )  | 
						
						
							| 11 | 
							
								
							 | 
							bnj1020.11 | 
							 |-  ( ps" <-> [. G / f ]. ps' )  | 
						
						
							| 12 | 
							
								
							 | 
							bnj1020.12 | 
							 |-  ( ch" <-> [. G / f ]. ch' )  | 
						
						
							| 13 | 
							
								
							 | 
							bnj1020.13 | 
							 |-  D = ( _om \ { (/) } ) | 
						
						
							| 14 | 
							
								
							 | 
							bnj1020.14 | 
							 |-  B = { f | E. n e. D ( f Fn n /\ ph /\ ps ) } | 
						
						
							| 15 | 
							
								
							 | 
							bnj1020.15 | 
							 |-  C = U_ y e. ( f ` m ) _pred ( y , A , R )  | 
						
						
							| 16 | 
							
								
							 | 
							bnj1020.16 | 
							 |-  G = ( f u. { <. n , C >. } ) | 
						
						
							| 17 | 
							
								
							 | 
							bnj1020.26 | 
							 |-  ( ch" <-> ( p e. D /\ G Fn p /\ ph" /\ ps" ) )  | 
						
						
							| 18 | 
							
								
							 | 
							bnj1019 | 
							 |-  ( E. p ( th /\ ch /\ ta /\ et ) <-> ( th /\ ch /\ et /\ E. p ta ) )  | 
						
						
							| 19 | 
							
								1 2 3 4 5 7 8 9 10 11 12 13 14 15 16
							 | 
							bnj998 | 
							 |-  ( ( th /\ ch /\ ta /\ et ) -> ch" )  | 
						
						
							| 20 | 
							
								3 5 6 13 19
							 | 
							bnj1001 | 
							 |-  ( ( th /\ ch /\ ta /\ et ) -> ( ch" /\ i e. _om /\ suc i e. p ) )  | 
						
						
							| 21 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 20
							 | 
							bnj1006 | 
							 |-  ( ( th /\ ch /\ ta /\ et ) -> _pred ( y , A , R ) C_ ( G ` suc i ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							exlimiv | 
							 |-  ( E. p ( th /\ ch /\ ta /\ et ) -> _pred ( y , A , R ) C_ ( G ` suc i ) )  | 
						
						
							| 23 | 
							
								18 22
							 | 
							sylbir | 
							 |-  ( ( th /\ ch /\ et /\ E. p ta ) -> _pred ( y , A , R ) C_ ( G ` suc i ) )  | 
						
						
							| 24 | 
							
								1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 19 20
							 | 
							bnj1018 | 
							 |-  ( ( th /\ ch /\ et /\ E. p ta ) -> ( G ` suc i ) C_ _trCl ( X , A , R ) )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							sstrd | 
							 |-  ( ( th /\ ch /\ et /\ E. p ta ) -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) )  |