Metamath Proof Explorer


Theorem bnj1020

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1020.1
|- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) )
bnj1020.2
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )
bnj1020.3
|- ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) )
bnj1020.4
|- ( th <-> ( R _FrSe A /\ X e. A /\ y e. _trCl ( X , A , R ) /\ z e. _pred ( y , A , R ) ) )
bnj1020.5
|- ( ta <-> ( m e. _om /\ n = suc m /\ p = suc n ) )
bnj1020.6
|- ( et <-> ( i e. n /\ y e. ( f ` i ) ) )
bnj1020.7
|- ( ph' <-> [. p / n ]. ph )
bnj1020.8
|- ( ps' <-> [. p / n ]. ps )
bnj1020.9
|- ( ch' <-> [. p / n ]. ch )
bnj1020.10
|- ( ph" <-> [. G / f ]. ph' )
bnj1020.11
|- ( ps" <-> [. G / f ]. ps' )
bnj1020.12
|- ( ch" <-> [. G / f ]. ch' )
bnj1020.13
|- D = ( _om \ { (/) } )
bnj1020.14
|- B = { f | E. n e. D ( f Fn n /\ ph /\ ps ) }
bnj1020.15
|- C = U_ y e. ( f ` m ) _pred ( y , A , R )
bnj1020.16
|- G = ( f u. { <. n , C >. } )
bnj1020.26
|- ( ch" <-> ( p e. D /\ G Fn p /\ ph" /\ ps" ) )
Assertion bnj1020
|- ( ( th /\ ch /\ et /\ E. p ta ) -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) )

Proof

Step Hyp Ref Expression
1 bnj1020.1
 |-  ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) )
2 bnj1020.2
 |-  ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )
3 bnj1020.3
 |-  ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) )
4 bnj1020.4
 |-  ( th <-> ( R _FrSe A /\ X e. A /\ y e. _trCl ( X , A , R ) /\ z e. _pred ( y , A , R ) ) )
5 bnj1020.5
 |-  ( ta <-> ( m e. _om /\ n = suc m /\ p = suc n ) )
6 bnj1020.6
 |-  ( et <-> ( i e. n /\ y e. ( f ` i ) ) )
7 bnj1020.7
 |-  ( ph' <-> [. p / n ]. ph )
8 bnj1020.8
 |-  ( ps' <-> [. p / n ]. ps )
9 bnj1020.9
 |-  ( ch' <-> [. p / n ]. ch )
10 bnj1020.10
 |-  ( ph" <-> [. G / f ]. ph' )
11 bnj1020.11
 |-  ( ps" <-> [. G / f ]. ps' )
12 bnj1020.12
 |-  ( ch" <-> [. G / f ]. ch' )
13 bnj1020.13
 |-  D = ( _om \ { (/) } )
14 bnj1020.14
 |-  B = { f | E. n e. D ( f Fn n /\ ph /\ ps ) }
15 bnj1020.15
 |-  C = U_ y e. ( f ` m ) _pred ( y , A , R )
16 bnj1020.16
 |-  G = ( f u. { <. n , C >. } )
17 bnj1020.26
 |-  ( ch" <-> ( p e. D /\ G Fn p /\ ph" /\ ps" ) )
18 bnj1019
 |-  ( E. p ( th /\ ch /\ ta /\ et ) <-> ( th /\ ch /\ et /\ E. p ta ) )
19 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 bnj998
 |-  ( ( th /\ ch /\ ta /\ et ) -> ch" )
20 3 5 6 13 19 bnj1001
 |-  ( ( th /\ ch /\ ta /\ et ) -> ( ch" /\ i e. _om /\ suc i e. p ) )
21 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 20 bnj1006
 |-  ( ( th /\ ch /\ ta /\ et ) -> _pred ( y , A , R ) C_ ( G ` suc i ) )
22 21 exlimiv
 |-  ( E. p ( th /\ ch /\ ta /\ et ) -> _pred ( y , A , R ) C_ ( G ` suc i ) )
23 18 22 sylbir
 |-  ( ( th /\ ch /\ et /\ E. p ta ) -> _pred ( y , A , R ) C_ ( G ` suc i ) )
24 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 19 20 bnj1018
 |-  ( ( th /\ ch /\ et /\ E. p ta ) -> ( G ` suc i ) C_ _trCl ( X , A , R ) )
25 23 24 sstrd
 |-  ( ( th /\ ch /\ et /\ E. p ta ) -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) )