Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1020.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
2 |
|
bnj1020.2 |
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
3 |
|
bnj1020.3 |
|- ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) ) |
4 |
|
bnj1020.4 |
|- ( th <-> ( R _FrSe A /\ X e. A /\ y e. _trCl ( X , A , R ) /\ z e. _pred ( y , A , R ) ) ) |
5 |
|
bnj1020.5 |
|- ( ta <-> ( m e. _om /\ n = suc m /\ p = suc n ) ) |
6 |
|
bnj1020.6 |
|- ( et <-> ( i e. n /\ y e. ( f ` i ) ) ) |
7 |
|
bnj1020.7 |
|- ( ph' <-> [. p / n ]. ph ) |
8 |
|
bnj1020.8 |
|- ( ps' <-> [. p / n ]. ps ) |
9 |
|
bnj1020.9 |
|- ( ch' <-> [. p / n ]. ch ) |
10 |
|
bnj1020.10 |
|- ( ph" <-> [. G / f ]. ph' ) |
11 |
|
bnj1020.11 |
|- ( ps" <-> [. G / f ]. ps' ) |
12 |
|
bnj1020.12 |
|- ( ch" <-> [. G / f ]. ch' ) |
13 |
|
bnj1020.13 |
|- D = ( _om \ { (/) } ) |
14 |
|
bnj1020.14 |
|- B = { f | E. n e. D ( f Fn n /\ ph /\ ps ) } |
15 |
|
bnj1020.15 |
|- C = U_ y e. ( f ` m ) _pred ( y , A , R ) |
16 |
|
bnj1020.16 |
|- G = ( f u. { <. n , C >. } ) |
17 |
|
bnj1020.26 |
|- ( ch" <-> ( p e. D /\ G Fn p /\ ph" /\ ps" ) ) |
18 |
|
bnj1019 |
|- ( E. p ( th /\ ch /\ ta /\ et ) <-> ( th /\ ch /\ et /\ E. p ta ) ) |
19 |
1 2 3 4 5 7 8 9 10 11 12 13 14 15 16
|
bnj998 |
|- ( ( th /\ ch /\ ta /\ et ) -> ch" ) |
20 |
3 5 6 13 19
|
bnj1001 |
|- ( ( th /\ ch /\ ta /\ et ) -> ( ch" /\ i e. _om /\ suc i e. p ) ) |
21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 20
|
bnj1006 |
|- ( ( th /\ ch /\ ta /\ et ) -> _pred ( y , A , R ) C_ ( G ` suc i ) ) |
22 |
21
|
exlimiv |
|- ( E. p ( th /\ ch /\ ta /\ et ) -> _pred ( y , A , R ) C_ ( G ` suc i ) ) |
23 |
18 22
|
sylbir |
|- ( ( th /\ ch /\ et /\ E. p ta ) -> _pred ( y , A , R ) C_ ( G ` suc i ) ) |
24 |
1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 19 20
|
bnj1018 |
|- ( ( th /\ ch /\ et /\ E. p ta ) -> ( G ` suc i ) C_ _trCl ( X , A , R ) ) |
25 |
23 24
|
sstrd |
|- ( ( th /\ ch /\ et /\ E. p ta ) -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) |