Metamath Proof Explorer


Theorem bnj1039

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1039.1
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )
bnj1039.2
|- ( ps' <-> [. j / i ]. ps )
Assertion bnj1039
|- ( ps' <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )

Proof

Step Hyp Ref Expression
1 bnj1039.1
 |-  ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )
2 bnj1039.2
 |-  ( ps' <-> [. j / i ]. ps )
3 vex
 |-  j e. _V
4 nfra1
 |-  F/ i A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) )
5 1 4 nfxfr
 |-  F/ i ps
6 3 5 sbcgfi
 |-  ( [. j / i ]. ps <-> ps )
7 2 6 1 3bitri
 |-  ( ps' <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )