Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1040.1 |
|- ( ph' <-> [. j / i ]. ph ) |
2 |
|
bnj1040.2 |
|- ( ps' <-> [. j / i ]. ps ) |
3 |
|
bnj1040.3 |
|- ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) ) |
4 |
|
bnj1040.4 |
|- ( ch' <-> [. j / i ]. ch ) |
5 |
3
|
sbcbii |
|- ( [. j / i ]. ch <-> [. j / i ]. ( n e. D /\ f Fn n /\ ph /\ ps ) ) |
6 |
|
df-bnj17 |
|- ( ( [. j / i ]. n e. D /\ [. j / i ]. f Fn n /\ [. j / i ]. ph /\ [. j / i ]. ps ) <-> ( ( [. j / i ]. n e. D /\ [. j / i ]. f Fn n /\ [. j / i ]. ph ) /\ [. j / i ]. ps ) ) |
7 |
|
vex |
|- j e. _V |
8 |
7
|
bnj525 |
|- ( [. j / i ]. n e. D <-> n e. D ) |
9 |
8
|
bicomi |
|- ( n e. D <-> [. j / i ]. n e. D ) |
10 |
7
|
bnj525 |
|- ( [. j / i ]. f Fn n <-> f Fn n ) |
11 |
10
|
bicomi |
|- ( f Fn n <-> [. j / i ]. f Fn n ) |
12 |
9 11 1 2
|
bnj887 |
|- ( ( n e. D /\ f Fn n /\ ph' /\ ps' ) <-> ( [. j / i ]. n e. D /\ [. j / i ]. f Fn n /\ [. j / i ]. ph /\ [. j / i ]. ps ) ) |
13 |
|
df-bnj17 |
|- ( ( n e. D /\ f Fn n /\ ph /\ ps ) <-> ( ( n e. D /\ f Fn n /\ ph ) /\ ps ) ) |
14 |
13
|
sbcbii |
|- ( [. j / i ]. ( n e. D /\ f Fn n /\ ph /\ ps ) <-> [. j / i ]. ( ( n e. D /\ f Fn n /\ ph ) /\ ps ) ) |
15 |
|
sbcan |
|- ( [. j / i ]. ( ( n e. D /\ f Fn n /\ ph ) /\ ps ) <-> ( [. j / i ]. ( n e. D /\ f Fn n /\ ph ) /\ [. j / i ]. ps ) ) |
16 |
|
sbc3an |
|- ( [. j / i ]. ( n e. D /\ f Fn n /\ ph ) <-> ( [. j / i ]. n e. D /\ [. j / i ]. f Fn n /\ [. j / i ]. ph ) ) |
17 |
16
|
anbi1i |
|- ( ( [. j / i ]. ( n e. D /\ f Fn n /\ ph ) /\ [. j / i ]. ps ) <-> ( ( [. j / i ]. n e. D /\ [. j / i ]. f Fn n /\ [. j / i ]. ph ) /\ [. j / i ]. ps ) ) |
18 |
14 15 17
|
3bitri |
|- ( [. j / i ]. ( n e. D /\ f Fn n /\ ph /\ ps ) <-> ( ( [. j / i ]. n e. D /\ [. j / i ]. f Fn n /\ [. j / i ]. ph ) /\ [. j / i ]. ps ) ) |
19 |
6 12 18
|
3bitr4ri |
|- ( [. j / i ]. ( n e. D /\ f Fn n /\ ph /\ ps ) <-> ( n e. D /\ f Fn n /\ ph' /\ ps' ) ) |
20 |
4 5 19
|
3bitri |
|- ( ch' <-> ( n e. D /\ f Fn n /\ ph' /\ ps' ) ) |