Metamath Proof Explorer


Theorem bnj1053

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1053.1
|- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) )
bnj1053.2
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )
bnj1053.3
|- ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) )
bnj1053.4
|- ( th <-> ( R _FrSe A /\ X e. A ) )
bnj1053.5
|- ( ta <-> ( B e. _V /\ _TrFo ( B , A , R ) /\ _pred ( X , A , R ) C_ B ) )
bnj1053.6
|- ( ze <-> ( i e. n /\ z e. ( f ` i ) ) )
bnj1053.7
|- D = ( _om \ { (/) } )
bnj1053.8
|- K = { f | E. n e. D ( f Fn n /\ ph /\ ps ) }
bnj1053.9
|- ( et <-> ( ( th /\ ta /\ ch /\ ze ) -> z e. B ) )
bnj1053.10
|- ( rh <-> A. j e. n ( j _E i -> [. j / i ]. et ) )
bnj1053.37
|- ( ( th /\ ta /\ ch /\ ze ) -> A. i e. n ( rh -> et ) )
Assertion bnj1053
|- ( ( th /\ ta ) -> _trCl ( X , A , R ) C_ B )

Proof

Step Hyp Ref Expression
1 bnj1053.1
 |-  ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) )
2 bnj1053.2
 |-  ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )
3 bnj1053.3
 |-  ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) )
4 bnj1053.4
 |-  ( th <-> ( R _FrSe A /\ X e. A ) )
5 bnj1053.5
 |-  ( ta <-> ( B e. _V /\ _TrFo ( B , A , R ) /\ _pred ( X , A , R ) C_ B ) )
6 bnj1053.6
 |-  ( ze <-> ( i e. n /\ z e. ( f ` i ) ) )
7 bnj1053.7
 |-  D = ( _om \ { (/) } )
8 bnj1053.8
 |-  K = { f | E. n e. D ( f Fn n /\ ph /\ ps ) }
9 bnj1053.9
 |-  ( et <-> ( ( th /\ ta /\ ch /\ ze ) -> z e. B ) )
10 bnj1053.10
 |-  ( rh <-> A. j e. n ( j _E i -> [. j / i ]. et ) )
11 bnj1053.37
 |-  ( ( th /\ ta /\ ch /\ ze ) -> A. i e. n ( rh -> et ) )
12 7 bnj923
 |-  ( n e. D -> n e. _om )
13 nnord
 |-  ( n e. _om -> Ord n )
14 ordfr
 |-  ( Ord n -> _E Fr n )
15 12 13 14 3syl
 |-  ( n e. D -> _E Fr n )
16 3 15 bnj769
 |-  ( ch -> _E Fr n )
17 16 bnj707
 |-  ( ( th /\ ta /\ ch /\ ze ) -> _E Fr n )
18 17 11 jca
 |-  ( ( th /\ ta /\ ch /\ ze ) -> ( _E Fr n /\ A. i e. n ( rh -> et ) ) )
19 1 2 3 4 5 6 7 8 9 10 18 bnj1052
 |-  ( ( th /\ ta ) -> _trCl ( X , A , R ) C_ B )