Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1053.1 | |- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
|
bnj1053.2 | |- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
||
bnj1053.3 | |- ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) ) |
||
bnj1053.4 | |- ( th <-> ( R _FrSe A /\ X e. A ) ) |
||
bnj1053.5 | |- ( ta <-> ( B e. _V /\ _TrFo ( B , A , R ) /\ _pred ( X , A , R ) C_ B ) ) |
||
bnj1053.6 | |- ( ze <-> ( i e. n /\ z e. ( f ` i ) ) ) |
||
bnj1053.7 | |- D = ( _om \ { (/) } ) |
||
bnj1053.8 | |- K = { f | E. n e. D ( f Fn n /\ ph /\ ps ) } |
||
bnj1053.9 | |- ( et <-> ( ( th /\ ta /\ ch /\ ze ) -> z e. B ) ) |
||
bnj1053.10 | |- ( rh <-> A. j e. n ( j _E i -> [. j / i ]. et ) ) |
||
bnj1053.37 | |- ( ( th /\ ta /\ ch /\ ze ) -> A. i e. n ( rh -> et ) ) |
||
Assertion | bnj1053 | |- ( ( th /\ ta ) -> _trCl ( X , A , R ) C_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1053.1 | |- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
|
2 | bnj1053.2 | |- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
|
3 | bnj1053.3 | |- ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) ) |
|
4 | bnj1053.4 | |- ( th <-> ( R _FrSe A /\ X e. A ) ) |
|
5 | bnj1053.5 | |- ( ta <-> ( B e. _V /\ _TrFo ( B , A , R ) /\ _pred ( X , A , R ) C_ B ) ) |
|
6 | bnj1053.6 | |- ( ze <-> ( i e. n /\ z e. ( f ` i ) ) ) |
|
7 | bnj1053.7 | |- D = ( _om \ { (/) } ) |
|
8 | bnj1053.8 | |- K = { f | E. n e. D ( f Fn n /\ ph /\ ps ) } |
|
9 | bnj1053.9 | |- ( et <-> ( ( th /\ ta /\ ch /\ ze ) -> z e. B ) ) |
|
10 | bnj1053.10 | |- ( rh <-> A. j e. n ( j _E i -> [. j / i ]. et ) ) |
|
11 | bnj1053.37 | |- ( ( th /\ ta /\ ch /\ ze ) -> A. i e. n ( rh -> et ) ) |
|
12 | 7 | bnj923 | |- ( n e. D -> n e. _om ) |
13 | nnord | |- ( n e. _om -> Ord n ) |
|
14 | ordfr | |- ( Ord n -> _E Fr n ) |
|
15 | 12 13 14 | 3syl | |- ( n e. D -> _E Fr n ) |
16 | 3 15 | bnj769 | |- ( ch -> _E Fr n ) |
17 | 16 | bnj707 | |- ( ( th /\ ta /\ ch /\ ze ) -> _E Fr n ) |
18 | 17 11 | jca | |- ( ( th /\ ta /\ ch /\ ze ) -> ( _E Fr n /\ A. i e. n ( rh -> et ) ) ) |
19 | 1 2 3 4 5 6 7 8 9 10 18 | bnj1052 | |- ( ( th /\ ta ) -> _trCl ( X , A , R ) C_ B ) |