| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1083.3 | 
							 |-  ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1083.8 | 
							 |-  K = { f | E. n e. D ( f Fn n /\ ph /\ ps ) } | 
						
						
							| 3 | 
							
								
							 | 
							df-rex | 
							 |-  ( E. n e. D ( f Fn n /\ ph /\ ps ) <-> E. n ( n e. D /\ ( f Fn n /\ ph /\ ps ) ) )  | 
						
						
							| 4 | 
							
								2
							 | 
							eqabri | 
							 |-  ( f e. K <-> E. n e. D ( f Fn n /\ ph /\ ps ) )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj252 | 
							 |-  ( ( n e. D /\ f Fn n /\ ph /\ ps ) <-> ( n e. D /\ ( f Fn n /\ ph /\ ps ) ) )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							bitri | 
							 |-  ( ch <-> ( n e. D /\ ( f Fn n /\ ph /\ ps ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							exbii | 
							 |-  ( E. n ch <-> E. n ( n e. D /\ ( f Fn n /\ ph /\ ps ) ) )  | 
						
						
							| 8 | 
							
								3 4 7
							 | 
							3bitr4i | 
							 |-  ( f e. K <-> E. n ch )  |