Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1093.1 |
|- E. j ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> ( f ` i ) C_ B ) |
2 |
|
bnj1093.2 |
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
3 |
|
bnj1093.3 |
|- ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) ) |
4 |
2
|
bnj1095 |
|- ( ps -> A. i ps ) |
5 |
4 3
|
bnj1096 |
|- ( ch -> A. i ch ) |
6 |
5
|
bnj1350 |
|- ( ( th /\ ta /\ ch ) -> A. i ( th /\ ta /\ ch ) ) |
7 |
|
impexp |
|- ( ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> ( f ` i ) C_ B ) <-> ( ( th /\ ta /\ ch ) -> ( ph0 -> ( f ` i ) C_ B ) ) ) |
8 |
7
|
exbii |
|- ( E. j ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> ( f ` i ) C_ B ) <-> E. j ( ( th /\ ta /\ ch ) -> ( ph0 -> ( f ` i ) C_ B ) ) ) |
9 |
1 8
|
mpbi |
|- E. j ( ( th /\ ta /\ ch ) -> ( ph0 -> ( f ` i ) C_ B ) ) |
10 |
9
|
19.37iv |
|- ( ( th /\ ta /\ ch ) -> E. j ( ph0 -> ( f ` i ) C_ B ) ) |
11 |
6 10
|
alrimih |
|- ( ( th /\ ta /\ ch ) -> A. i E. j ( ph0 -> ( f ` i ) C_ B ) ) |
12 |
11
|
bnj721 |
|- ( ( th /\ ta /\ ch /\ ze ) -> A. i E. j ( ph0 -> ( f ` i ) C_ B ) ) |