| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1093.1 | 
							 |-  E. j ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> ( f ` i ) C_ B )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1093.2 | 
							 |-  ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1093.3 | 
							 |-  ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) )  | 
						
						
							| 4 | 
							
								2
							 | 
							bnj1095 | 
							 |-  ( ps -> A. i ps )  | 
						
						
							| 5 | 
							
								4 3
							 | 
							bnj1096 | 
							 |-  ( ch -> A. i ch )  | 
						
						
							| 6 | 
							
								5
							 | 
							bnj1350 | 
							 |-  ( ( th /\ ta /\ ch ) -> A. i ( th /\ ta /\ ch ) )  | 
						
						
							| 7 | 
							
								
							 | 
							impexp | 
							 |-  ( ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> ( f ` i ) C_ B ) <-> ( ( th /\ ta /\ ch ) -> ( ph0 -> ( f ` i ) C_ B ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							exbii | 
							 |-  ( E. j ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> ( f ` i ) C_ B ) <-> E. j ( ( th /\ ta /\ ch ) -> ( ph0 -> ( f ` i ) C_ B ) ) )  | 
						
						
							| 9 | 
							
								1 8
							 | 
							mpbi | 
							 |-  E. j ( ( th /\ ta /\ ch ) -> ( ph0 -> ( f ` i ) C_ B ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							19.37iv | 
							 |-  ( ( th /\ ta /\ ch ) -> E. j ( ph0 -> ( f ` i ) C_ B ) )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							alrimih | 
							 |-  ( ( th /\ ta /\ ch ) -> A. i E. j ( ph0 -> ( f ` i ) C_ B ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							bnj721 | 
							 |-  ( ( th /\ ta /\ ch /\ ze ) -> A. i E. j ( ph0 -> ( f ` i ) C_ B ) )  |