Metamath Proof Explorer


Theorem bnj1095

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1095.1
|- ( ph <-> A. x e. A ps )
Assertion bnj1095
|- ( ph -> A. x ph )

Proof

Step Hyp Ref Expression
1 bnj1095.1
 |-  ( ph <-> A. x e. A ps )
2 hbra1
 |-  ( A. x e. A ps -> A. x A. x e. A ps )
3 1 2 hbxfrbi
 |-  ( ph -> A. x ph )