| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1097.1 | 
							 |-  ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1097.3 | 
							 |-  ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1097.5 | 
							 |-  ( ta <-> ( B e. _V /\ _TrFo ( B , A , R ) /\ _pred ( X , A , R ) C_ B ) )  | 
						
						
							| 4 | 
							
								1
							 | 
							biimpi | 
							 |-  ( ph -> ( f ` (/) ) = _pred ( X , A , R ) )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							bnj771 | 
							 |-  ( ch -> ( f ` (/) ) = _pred ( X , A , R ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							3ad2ant3 | 
							 |-  ( ( th /\ ta /\ ch ) -> ( f ` (/) ) = _pred ( X , A , R ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> ( f ` (/) ) = _pred ( X , A , R ) )  | 
						
						
							| 8 | 
							
								3
							 | 
							simp3bi | 
							 |-  ( ta -> _pred ( X , A , R ) C_ B )  | 
						
						
							| 9 | 
							
								8
							 | 
							3ad2ant2 | 
							 |-  ( ( th /\ ta /\ ch ) -> _pred ( X , A , R ) C_ B )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> _pred ( X , A , R ) C_ B )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							jca | 
							 |-  ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> ( ( f ` (/) ) = _pred ( X , A , R ) /\ _pred ( X , A , R ) C_ B ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							anim2i | 
							 |-  ( ( i = (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ( i = (/) /\ ( ( f ` (/) ) = _pred ( X , A , R ) /\ _pred ( X , A , R ) C_ B ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							3anass | 
							 |-  ( ( i = (/) /\ ( f ` (/) ) = _pred ( X , A , R ) /\ _pred ( X , A , R ) C_ B ) <-> ( i = (/) /\ ( ( f ` (/) ) = _pred ( X , A , R ) /\ _pred ( X , A , R ) C_ B ) ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							sylibr | 
							 |-  ( ( i = (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ( i = (/) /\ ( f ` (/) ) = _pred ( X , A , R ) /\ _pred ( X , A , R ) C_ B ) )  | 
						
						
							| 15 | 
							
								
							 | 
							fveqeq2 | 
							 |-  ( i = (/) -> ( ( f ` i ) = _pred ( X , A , R ) <-> ( f ` (/) ) = _pred ( X , A , R ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							biimpar | 
							 |-  ( ( i = (/) /\ ( f ` (/) ) = _pred ( X , A , R ) ) -> ( f ` i ) = _pred ( X , A , R ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantr | 
							 |-  ( ( ( i = (/) /\ ( f ` (/) ) = _pred ( X , A , R ) ) /\ _pred ( X , A , R ) C_ B ) -> ( f ` i ) = _pred ( X , A , R ) )  | 
						
						
							| 18 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( i = (/) /\ ( f ` (/) ) = _pred ( X , A , R ) ) /\ _pred ( X , A , R ) C_ B ) -> _pred ( X , A , R ) C_ B )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							eqsstrd | 
							 |-  ( ( ( i = (/) /\ ( f ` (/) ) = _pred ( X , A , R ) ) /\ _pred ( X , A , R ) C_ B ) -> ( f ` i ) C_ B )  | 
						
						
							| 20 | 
							
								19
							 | 
							3impa | 
							 |-  ( ( i = (/) /\ ( f ` (/) ) = _pred ( X , A , R ) /\ _pred ( X , A , R ) C_ B ) -> ( f ` i ) C_ B )  | 
						
						
							| 21 | 
							
								14 20
							 | 
							syl | 
							 |-  ( ( i = (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ( f ` i ) C_ B )  |