Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1097.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
2 |
|
bnj1097.3 |
|- ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) ) |
3 |
|
bnj1097.5 |
|- ( ta <-> ( B e. _V /\ _TrFo ( B , A , R ) /\ _pred ( X , A , R ) C_ B ) ) |
4 |
1
|
biimpi |
|- ( ph -> ( f ` (/) ) = _pred ( X , A , R ) ) |
5 |
2 4
|
bnj771 |
|- ( ch -> ( f ` (/) ) = _pred ( X , A , R ) ) |
6 |
5
|
3ad2ant3 |
|- ( ( th /\ ta /\ ch ) -> ( f ` (/) ) = _pred ( X , A , R ) ) |
7 |
6
|
adantr |
|- ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> ( f ` (/) ) = _pred ( X , A , R ) ) |
8 |
3
|
simp3bi |
|- ( ta -> _pred ( X , A , R ) C_ B ) |
9 |
8
|
3ad2ant2 |
|- ( ( th /\ ta /\ ch ) -> _pred ( X , A , R ) C_ B ) |
10 |
9
|
adantr |
|- ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> _pred ( X , A , R ) C_ B ) |
11 |
7 10
|
jca |
|- ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> ( ( f ` (/) ) = _pred ( X , A , R ) /\ _pred ( X , A , R ) C_ B ) ) |
12 |
11
|
anim2i |
|- ( ( i = (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ( i = (/) /\ ( ( f ` (/) ) = _pred ( X , A , R ) /\ _pred ( X , A , R ) C_ B ) ) ) |
13 |
|
3anass |
|- ( ( i = (/) /\ ( f ` (/) ) = _pred ( X , A , R ) /\ _pred ( X , A , R ) C_ B ) <-> ( i = (/) /\ ( ( f ` (/) ) = _pred ( X , A , R ) /\ _pred ( X , A , R ) C_ B ) ) ) |
14 |
12 13
|
sylibr |
|- ( ( i = (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ( i = (/) /\ ( f ` (/) ) = _pred ( X , A , R ) /\ _pred ( X , A , R ) C_ B ) ) |
15 |
|
fveqeq2 |
|- ( i = (/) -> ( ( f ` i ) = _pred ( X , A , R ) <-> ( f ` (/) ) = _pred ( X , A , R ) ) ) |
16 |
15
|
biimpar |
|- ( ( i = (/) /\ ( f ` (/) ) = _pred ( X , A , R ) ) -> ( f ` i ) = _pred ( X , A , R ) ) |
17 |
16
|
adantr |
|- ( ( ( i = (/) /\ ( f ` (/) ) = _pred ( X , A , R ) ) /\ _pred ( X , A , R ) C_ B ) -> ( f ` i ) = _pred ( X , A , R ) ) |
18 |
|
simpr |
|- ( ( ( i = (/) /\ ( f ` (/) ) = _pred ( X , A , R ) ) /\ _pred ( X , A , R ) C_ B ) -> _pred ( X , A , R ) C_ B ) |
19 |
17 18
|
eqsstrd |
|- ( ( ( i = (/) /\ ( f ` (/) ) = _pred ( X , A , R ) ) /\ _pred ( X , A , R ) C_ B ) -> ( f ` i ) C_ B ) |
20 |
19
|
3impa |
|- ( ( i = (/) /\ ( f ` (/) ) = _pred ( X , A , R ) /\ _pred ( X , A , R ) C_ B ) -> ( f ` i ) C_ B ) |
21 |
14 20
|
syl |
|- ( ( i = (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ( f ` i ) C_ B ) |