Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1101.1 | |- E. x ( ph -> ps ) |
|
bnj1101.2 | |- ( ch -> ph ) |
||
Assertion | bnj1101 | |- E. x ( ch -> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1101.1 | |- E. x ( ph -> ps ) |
|
2 | bnj1101.2 | |- ( ch -> ph ) |
|
3 | pm3.42 | |- ( ( ph -> ps ) -> ( ( ch /\ ph ) -> ps ) ) |
|
4 | 1 3 | bnj101 | |- E. x ( ( ch /\ ph ) -> ps ) |
5 | 2 | pm4.71i | |- ( ch <-> ( ch /\ ph ) ) |
6 | 5 | imbi1i | |- ( ( ch -> ps ) <-> ( ( ch /\ ph ) -> ps ) ) |
7 | 6 | exbii | |- ( E. x ( ch -> ps ) <-> E. x ( ( ch /\ ph ) -> ps ) ) |
8 | 4 7 | mpbir | |- E. x ( ch -> ps ) |