Metamath Proof Explorer


Theorem bnj1101

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1101.1
|- E. x ( ph -> ps )
bnj1101.2
|- ( ch -> ph )
Assertion bnj1101
|- E. x ( ch -> ps )

Proof

Step Hyp Ref Expression
1 bnj1101.1
 |-  E. x ( ph -> ps )
2 bnj1101.2
 |-  ( ch -> ph )
3 pm3.42
 |-  ( ( ph -> ps ) -> ( ( ch /\ ph ) -> ps ) )
4 1 3 bnj101
 |-  E. x ( ( ch /\ ph ) -> ps )
5 2 pm4.71i
 |-  ( ch <-> ( ch /\ ph ) )
6 5 imbi1i
 |-  ( ( ch -> ps ) <-> ( ( ch /\ ph ) -> ps ) )
7 6 exbii
 |-  ( E. x ( ch -> ps ) <-> E. x ( ( ch /\ ph ) -> ps ) )
8 4 7 mpbir
 |-  E. x ( ch -> ps )