Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1109.1 |
|- E. x ( ( A =/= B /\ ph ) -> ps ) |
2 |
|
bnj1109.2 |
|- ( ( A = B /\ ph ) -> ps ) |
3 |
2
|
ex |
|- ( A = B -> ( ph -> ps ) ) |
4 |
3
|
a1i |
|- ( ( A =/= B -> ( ph -> ps ) ) -> ( A = B -> ( ph -> ps ) ) ) |
5 |
4
|
ax-gen |
|- A. x ( ( A =/= B -> ( ph -> ps ) ) -> ( A = B -> ( ph -> ps ) ) ) |
6 |
|
impexp |
|- ( ( ( A =/= B /\ ph ) -> ps ) <-> ( A =/= B -> ( ph -> ps ) ) ) |
7 |
6
|
exbii |
|- ( E. x ( ( A =/= B /\ ph ) -> ps ) <-> E. x ( A =/= B -> ( ph -> ps ) ) ) |
8 |
1 7
|
mpbi |
|- E. x ( A =/= B -> ( ph -> ps ) ) |
9 |
|
exintr |
|- ( A. x ( ( A =/= B -> ( ph -> ps ) ) -> ( A = B -> ( ph -> ps ) ) ) -> ( E. x ( A =/= B -> ( ph -> ps ) ) -> E. x ( ( A =/= B -> ( ph -> ps ) ) /\ ( A = B -> ( ph -> ps ) ) ) ) ) |
10 |
5 8 9
|
mp2 |
|- E. x ( ( A =/= B -> ( ph -> ps ) ) /\ ( A = B -> ( ph -> ps ) ) ) |
11 |
|
exancom |
|- ( E. x ( ( A =/= B -> ( ph -> ps ) ) /\ ( A = B -> ( ph -> ps ) ) ) <-> E. x ( ( A = B -> ( ph -> ps ) ) /\ ( A =/= B -> ( ph -> ps ) ) ) ) |
12 |
10 11
|
mpbi |
|- E. x ( ( A = B -> ( ph -> ps ) ) /\ ( A =/= B -> ( ph -> ps ) ) ) |
13 |
|
df-ne |
|- ( A =/= B <-> -. A = B ) |
14 |
13
|
imbi1i |
|- ( ( A =/= B -> ( ph -> ps ) ) <-> ( -. A = B -> ( ph -> ps ) ) ) |
15 |
|
pm2.61 |
|- ( ( A = B -> ( ph -> ps ) ) -> ( ( -. A = B -> ( ph -> ps ) ) -> ( ph -> ps ) ) ) |
16 |
15
|
imp |
|- ( ( ( A = B -> ( ph -> ps ) ) /\ ( -. A = B -> ( ph -> ps ) ) ) -> ( ph -> ps ) ) |
17 |
14 16
|
sylan2b |
|- ( ( ( A = B -> ( ph -> ps ) ) /\ ( A =/= B -> ( ph -> ps ) ) ) -> ( ph -> ps ) ) |
18 |
12 17
|
bnj101 |
|- E. x ( ph -> ps ) |