| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1112.1 | 
							 |-  ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							bnj115 | 
							 |-  ( ps <-> A. i ( ( i e. _om /\ suc i e. n ) -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							eleq1w | 
							 |-  ( i = j -> ( i e. _om <-> j e. _om ) )  | 
						
						
							| 4 | 
							
								
							 | 
							suceq | 
							 |-  ( i = j -> suc i = suc j )  | 
						
						
							| 5 | 
							
								4
							 | 
							eleq1d | 
							 |-  ( i = j -> ( suc i e. n <-> suc j e. n ) )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							anbi12d | 
							 |-  ( i = j -> ( ( i e. _om /\ suc i e. n ) <-> ( j e. _om /\ suc j e. n ) ) )  | 
						
						
							| 7 | 
							
								4
							 | 
							fveq2d | 
							 |-  ( i = j -> ( f ` suc i ) = ( f ` suc j ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fveq2 | 
							 |-  ( i = j -> ( f ` i ) = ( f ` j ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							bnj1113 | 
							 |-  ( i = j -> U_ y e. ( f ` i ) _pred ( y , A , R ) = U_ y e. ( f ` j ) _pred ( y , A , R ) )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							eqeq12d | 
							 |-  ( i = j -> ( ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) <-> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							imbi12d | 
							 |-  ( i = j -> ( ( ( i e. _om /\ suc i e. n ) -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) <-> ( ( j e. _om /\ suc j e. n ) -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							cbvalvw | 
							 |-  ( A. i ( ( i e. _om /\ suc i e. n ) -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) <-> A. j ( ( j e. _om /\ suc j e. n ) -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) )  | 
						
						
							| 13 | 
							
								2 12
							 | 
							bitri | 
							 |-  ( ps <-> A. j ( ( j e. _om /\ suc j e. n ) -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) )  |