Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1112.1 |
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
2 |
1
|
bnj115 |
|- ( ps <-> A. i ( ( i e. _om /\ suc i e. n ) -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
3 |
|
eleq1w |
|- ( i = j -> ( i e. _om <-> j e. _om ) ) |
4 |
|
suceq |
|- ( i = j -> suc i = suc j ) |
5 |
4
|
eleq1d |
|- ( i = j -> ( suc i e. n <-> suc j e. n ) ) |
6 |
3 5
|
anbi12d |
|- ( i = j -> ( ( i e. _om /\ suc i e. n ) <-> ( j e. _om /\ suc j e. n ) ) ) |
7 |
4
|
fveq2d |
|- ( i = j -> ( f ` suc i ) = ( f ` suc j ) ) |
8 |
|
fveq2 |
|- ( i = j -> ( f ` i ) = ( f ` j ) ) |
9 |
8
|
bnj1113 |
|- ( i = j -> U_ y e. ( f ` i ) _pred ( y , A , R ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) |
10 |
7 9
|
eqeq12d |
|- ( i = j -> ( ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) <-> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) |
11 |
6 10
|
imbi12d |
|- ( i = j -> ( ( ( i e. _om /\ suc i e. n ) -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) <-> ( ( j e. _om /\ suc j e. n ) -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) ) |
12 |
11
|
cbvalvw |
|- ( A. i ( ( i e. _om /\ suc i e. n ) -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) <-> A. j ( ( j e. _om /\ suc j e. n ) -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) |
13 |
2 12
|
bitri |
|- ( ps <-> A. j ( ( j e. _om /\ suc j e. n ) -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) |