Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1118.2 |
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
2 |
|
bnj1118.3 |
|- ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) ) |
3 |
|
bnj1118.5 |
|- ( ta <-> ( B e. _V /\ _TrFo ( B , A , R ) /\ _pred ( X , A , R ) C_ B ) ) |
4 |
|
bnj1118.7 |
|- D = ( _om \ { (/) } ) |
5 |
|
bnj1118.18 |
|- ( si <-> ( ( j e. n /\ j _E i ) -> et' ) ) |
6 |
|
bnj1118.19 |
|- ( ph0 <-> ( i e. n /\ si /\ f e. K /\ i e. dom f ) ) |
7 |
|
bnj1118.26 |
|- ( et' <-> ( ( f e. K /\ j e. dom f ) -> ( f ` j ) C_ B ) ) |
8 |
2 4 5 6 7
|
bnj1110 |
|- E. j ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) |
9 |
|
ancl |
|- ( ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) -> ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) /\ ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) ) ) |
10 |
8 9
|
bnj101 |
|- E. j ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) /\ ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) ) |
11 |
|
simpr2 |
|- ( ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) /\ ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) -> i = suc j ) |
12 |
2
|
bnj1254 |
|- ( ch -> ps ) |
13 |
12
|
3ad2ant3 |
|- ( ( th /\ ta /\ ch ) -> ps ) |
14 |
13
|
ad2antrl |
|- ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ps ) |
15 |
14
|
adantr |
|- ( ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) /\ ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) -> ps ) |
16 |
2
|
bnj1232 |
|- ( ch -> n e. D ) |
17 |
16
|
3ad2ant3 |
|- ( ( th /\ ta /\ ch ) -> n e. D ) |
18 |
17
|
ad2antrl |
|- ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> n e. D ) |
19 |
18
|
adantr |
|- ( ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) /\ ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) -> n e. D ) |
20 |
|
simpr1 |
|- ( ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) /\ ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) -> j e. n ) |
21 |
4
|
bnj923 |
|- ( n e. D -> n e. _om ) |
22 |
21
|
anim1i |
|- ( ( n e. D /\ j e. n ) -> ( n e. _om /\ j e. n ) ) |
23 |
22
|
ancomd |
|- ( ( n e. D /\ j e. n ) -> ( j e. n /\ n e. _om ) ) |
24 |
19 20 23
|
syl2anc |
|- ( ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) /\ ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) -> ( j e. n /\ n e. _om ) ) |
25 |
|
elnn |
|- ( ( j e. n /\ n e. _om ) -> j e. _om ) |
26 |
24 25
|
syl |
|- ( ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) /\ ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) -> j e. _om ) |
27 |
6
|
bnj1232 |
|- ( ph0 -> i e. n ) |
28 |
27
|
adantl |
|- ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> i e. n ) |
29 |
28
|
ad2antlr |
|- ( ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) /\ ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) -> i e. n ) |
30 |
11 15 26 29
|
bnj951 |
|- ( ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) /\ ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) -> ( i = suc j /\ ps /\ j e. _om /\ i e. n ) ) |
31 |
3
|
simp2bi |
|- ( ta -> _TrFo ( B , A , R ) ) |
32 |
31
|
3ad2ant2 |
|- ( ( th /\ ta /\ ch ) -> _TrFo ( B , A , R ) ) |
33 |
32
|
ad2antrl |
|- ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> _TrFo ( B , A , R ) ) |
34 |
|
simp3 |
|- ( ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) -> ( f ` j ) C_ B ) |
35 |
33 34
|
anim12i |
|- ( ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) /\ ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) -> ( _TrFo ( B , A , R ) /\ ( f ` j ) C_ B ) ) |
36 |
|
bnj256 |
|- ( ( i = suc j /\ ps /\ j e. _om /\ i e. n ) <-> ( ( i = suc j /\ ps ) /\ ( j e. _om /\ i e. n ) ) ) |
37 |
1
|
bnj1112 |
|- ( ps <-> A. j ( ( j e. _om /\ suc j e. n ) -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) |
38 |
37
|
biimpi |
|- ( ps -> A. j ( ( j e. _om /\ suc j e. n ) -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) |
39 |
38
|
19.21bi |
|- ( ps -> ( ( j e. _om /\ suc j e. n ) -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) |
40 |
|
eleq1 |
|- ( i = suc j -> ( i e. n <-> suc j e. n ) ) |
41 |
40
|
anbi2d |
|- ( i = suc j -> ( ( j e. _om /\ i e. n ) <-> ( j e. _om /\ suc j e. n ) ) ) |
42 |
|
fveqeq2 |
|- ( i = suc j -> ( ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) <-> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) |
43 |
41 42
|
imbi12d |
|- ( i = suc j -> ( ( ( j e. _om /\ i e. n ) -> ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) <-> ( ( j e. _om /\ suc j e. n ) -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) ) |
44 |
39 43
|
syl5ibr |
|- ( i = suc j -> ( ps -> ( ( j e. _om /\ i e. n ) -> ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) ) |
45 |
44
|
imp31 |
|- ( ( ( i = suc j /\ ps ) /\ ( j e. _om /\ i e. n ) ) -> ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) |
46 |
36 45
|
sylbi |
|- ( ( i = suc j /\ ps /\ j e. _om /\ i e. n ) -> ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) |
47 |
|
df-bnj19 |
|- ( _TrFo ( B , A , R ) <-> A. y e. B _pred ( y , A , R ) C_ B ) |
48 |
|
ssralv |
|- ( ( f ` j ) C_ B -> ( A. y e. B _pred ( y , A , R ) C_ B -> A. y e. ( f ` j ) _pred ( y , A , R ) C_ B ) ) |
49 |
47 48
|
syl5bi |
|- ( ( f ` j ) C_ B -> ( _TrFo ( B , A , R ) -> A. y e. ( f ` j ) _pred ( y , A , R ) C_ B ) ) |
50 |
49
|
impcom |
|- ( ( _TrFo ( B , A , R ) /\ ( f ` j ) C_ B ) -> A. y e. ( f ` j ) _pred ( y , A , R ) C_ B ) |
51 |
|
iunss |
|- ( U_ y e. ( f ` j ) _pred ( y , A , R ) C_ B <-> A. y e. ( f ` j ) _pred ( y , A , R ) C_ B ) |
52 |
50 51
|
sylibr |
|- ( ( _TrFo ( B , A , R ) /\ ( f ` j ) C_ B ) -> U_ y e. ( f ` j ) _pred ( y , A , R ) C_ B ) |
53 |
|
sseq1 |
|- ( ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) -> ( ( f ` i ) C_ B <-> U_ y e. ( f ` j ) _pred ( y , A , R ) C_ B ) ) |
54 |
53
|
biimpar |
|- ( ( ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) /\ U_ y e. ( f ` j ) _pred ( y , A , R ) C_ B ) -> ( f ` i ) C_ B ) |
55 |
46 52 54
|
syl2an |
|- ( ( ( i = suc j /\ ps /\ j e. _om /\ i e. n ) /\ ( _TrFo ( B , A , R ) /\ ( f ` j ) C_ B ) ) -> ( f ` i ) C_ B ) |
56 |
30 35 55
|
syl2anc |
|- ( ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) /\ ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) -> ( f ` i ) C_ B ) |
57 |
10 56
|
bnj1023 |
|- E. j ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ( f ` i ) C_ B ) |