| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1118.2 | 
							 |-  ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1118.3 | 
							 |-  ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1118.5 | 
							 |-  ( ta <-> ( B e. _V /\ _TrFo ( B , A , R ) /\ _pred ( X , A , R ) C_ B ) )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj1118.7 | 
							 |-  D = ( _om \ { (/) } ) | 
						
						
							| 5 | 
							
								
							 | 
							bnj1118.18 | 
							 |-  ( si <-> ( ( j e. n /\ j _E i ) -> et' ) )  | 
						
						
							| 6 | 
							
								
							 | 
							bnj1118.19 | 
							 |-  ( ph0 <-> ( i e. n /\ si /\ f e. K /\ i e. dom f ) )  | 
						
						
							| 7 | 
							
								
							 | 
							bnj1118.26 | 
							 |-  ( et' <-> ( ( f e. K /\ j e. dom f ) -> ( f ` j ) C_ B ) )  | 
						
						
							| 8 | 
							
								2 4 5 6 7
							 | 
							bnj1110 | 
							 |-  E. j ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) )  | 
						
						
							| 9 | 
							
								
							 | 
							ancl | 
							 |-  ( ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) -> ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) /\ ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							bnj101 | 
							 |-  E. j ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) /\ ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							simpr2 | 
							 |-  ( ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) /\ ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) -> i = suc j )  | 
						
						
							| 12 | 
							
								2
							 | 
							bnj1254 | 
							 |-  ( ch -> ps )  | 
						
						
							| 13 | 
							
								12
							 | 
							3ad2ant3 | 
							 |-  ( ( th /\ ta /\ ch ) -> ps )  | 
						
						
							| 14 | 
							
								13
							 | 
							ad2antrl | 
							 |-  ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ps )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantr | 
							 |-  ( ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) /\ ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) -> ps )  | 
						
						
							| 16 | 
							
								2
							 | 
							bnj1232 | 
							 |-  ( ch -> n e. D )  | 
						
						
							| 17 | 
							
								16
							 | 
							3ad2ant3 | 
							 |-  ( ( th /\ ta /\ ch ) -> n e. D )  | 
						
						
							| 18 | 
							
								17
							 | 
							ad2antrl | 
							 |-  ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> n e. D )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantr | 
							 |-  ( ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) /\ ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) -> n e. D )  | 
						
						
							| 20 | 
							
								
							 | 
							simpr1 | 
							 |-  ( ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) /\ ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) -> j e. n )  | 
						
						
							| 21 | 
							
								4
							 | 
							bnj923 | 
							 |-  ( n e. D -> n e. _om )  | 
						
						
							| 22 | 
							
								21
							 | 
							anim1i | 
							 |-  ( ( n e. D /\ j e. n ) -> ( n e. _om /\ j e. n ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							ancomd | 
							 |-  ( ( n e. D /\ j e. n ) -> ( j e. n /\ n e. _om ) )  | 
						
						
							| 24 | 
							
								19 20 23
							 | 
							syl2anc | 
							 |-  ( ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) /\ ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) -> ( j e. n /\ n e. _om ) )  | 
						
						
							| 25 | 
							
								
							 | 
							elnn | 
							 |-  ( ( j e. n /\ n e. _om ) -> j e. _om )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							syl | 
							 |-  ( ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) /\ ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) -> j e. _om )  | 
						
						
							| 27 | 
							
								6
							 | 
							bnj1232 | 
							 |-  ( ph0 -> i e. n )  | 
						
						
							| 28 | 
							
								27
							 | 
							adantl | 
							 |-  ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> i e. n )  | 
						
						
							| 29 | 
							
								28
							 | 
							ad2antlr | 
							 |-  ( ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) /\ ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) -> i e. n )  | 
						
						
							| 30 | 
							
								11 15 26 29
							 | 
							bnj951 | 
							 |-  ( ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) /\ ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) -> ( i = suc j /\ ps /\ j e. _om /\ i e. n ) )  | 
						
						
							| 31 | 
							
								3
							 | 
							simp2bi | 
							 |-  ( ta -> _TrFo ( B , A , R ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							3ad2ant2 | 
							 |-  ( ( th /\ ta /\ ch ) -> _TrFo ( B , A , R ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							ad2antrl | 
							 |-  ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> _TrFo ( B , A , R ) )  | 
						
						
							| 34 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) -> ( f ` j ) C_ B )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							anim12i | 
							 |-  ( ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) /\ ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) -> ( _TrFo ( B , A , R ) /\ ( f ` j ) C_ B ) )  | 
						
						
							| 36 | 
							
								
							 | 
							bnj256 | 
							 |-  ( ( i = suc j /\ ps /\ j e. _om /\ i e. n ) <-> ( ( i = suc j /\ ps ) /\ ( j e. _om /\ i e. n ) ) )  | 
						
						
							| 37 | 
							
								1
							 | 
							bnj1112 | 
							 |-  ( ps <-> A. j ( ( j e. _om /\ suc j e. n ) -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							biimpi | 
							 |-  ( ps -> A. j ( ( j e. _om /\ suc j e. n ) -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							19.21bi | 
							 |-  ( ps -> ( ( j e. _om /\ suc j e. n ) -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							eleq1 | 
							 |-  ( i = suc j -> ( i e. n <-> suc j e. n ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							anbi2d | 
							 |-  ( i = suc j -> ( ( j e. _om /\ i e. n ) <-> ( j e. _om /\ suc j e. n ) ) )  | 
						
						
							| 42 | 
							
								
							 | 
							fveqeq2 | 
							 |-  ( i = suc j -> ( ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) <-> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							imbi12d | 
							 |-  ( i = suc j -> ( ( ( j e. _om /\ i e. n ) -> ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) <-> ( ( j e. _om /\ suc j e. n ) -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) )  | 
						
						
							| 44 | 
							
								39 43
							 | 
							imbitrrid | 
							 |-  ( i = suc j -> ( ps -> ( ( j e. _om /\ i e. n ) -> ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							imp31 | 
							 |-  ( ( ( i = suc j /\ ps ) /\ ( j e. _om /\ i e. n ) ) -> ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) )  | 
						
						
							| 46 | 
							
								36 45
							 | 
							sylbi | 
							 |-  ( ( i = suc j /\ ps /\ j e. _om /\ i e. n ) -> ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) )  | 
						
						
							| 47 | 
							
								
							 | 
							df-bnj19 | 
							 |-  ( _TrFo ( B , A , R ) <-> A. y e. B _pred ( y , A , R ) C_ B )  | 
						
						
							| 48 | 
							
								
							 | 
							ssralv | 
							 |-  ( ( f ` j ) C_ B -> ( A. y e. B _pred ( y , A , R ) C_ B -> A. y e. ( f ` j ) _pred ( y , A , R ) C_ B ) )  | 
						
						
							| 49 | 
							
								47 48
							 | 
							biimtrid | 
							 |-  ( ( f ` j ) C_ B -> ( _TrFo ( B , A , R ) -> A. y e. ( f ` j ) _pred ( y , A , R ) C_ B ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							impcom | 
							 |-  ( ( _TrFo ( B , A , R ) /\ ( f ` j ) C_ B ) -> A. y e. ( f ` j ) _pred ( y , A , R ) C_ B )  | 
						
						
							| 51 | 
							
								
							 | 
							iunss | 
							 |-  ( U_ y e. ( f ` j ) _pred ( y , A , R ) C_ B <-> A. y e. ( f ` j ) _pred ( y , A , R ) C_ B )  | 
						
						
							| 52 | 
							
								50 51
							 | 
							sylibr | 
							 |-  ( ( _TrFo ( B , A , R ) /\ ( f ` j ) C_ B ) -> U_ y e. ( f ` j ) _pred ( y , A , R ) C_ B )  | 
						
						
							| 53 | 
							
								
							 | 
							sseq1 | 
							 |-  ( ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) -> ( ( f ` i ) C_ B <-> U_ y e. ( f ` j ) _pred ( y , A , R ) C_ B ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							biimpar | 
							 |-  ( ( ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) /\ U_ y e. ( f ` j ) _pred ( y , A , R ) C_ B ) -> ( f ` i ) C_ B )  | 
						
						
							| 55 | 
							
								46 52 54
							 | 
							syl2an | 
							 |-  ( ( ( i = suc j /\ ps /\ j e. _om /\ i e. n ) /\ ( _TrFo ( B , A , R ) /\ ( f ` j ) C_ B ) ) -> ( f ` i ) C_ B )  | 
						
						
							| 56 | 
							
								30 35 55
							 | 
							syl2anc | 
							 |-  ( ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) /\ ( j e. n /\ i = suc j /\ ( f ` j ) C_ B ) ) -> ( f ` i ) C_ B )  | 
						
						
							| 57 | 
							
								10 56
							 | 
							bnj1023 | 
							 |-  E. j ( ( i =/= (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ( f ` i ) C_ B )  |