Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1123.4 |
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
2 |
|
bnj1123.3 |
|- K = { f | E. n e. D ( f Fn n /\ ph /\ ps ) } |
3 |
|
bnj1123.1 |
|- ( et <-> ( ( f e. K /\ i e. dom f ) -> ( f ` i ) C_ B ) ) |
4 |
|
bnj1123.2 |
|- ( et' <-> [. j / i ]. et ) |
5 |
3
|
sbcbii |
|- ( [. j / i ]. et <-> [. j / i ]. ( ( f e. K /\ i e. dom f ) -> ( f ` i ) C_ B ) ) |
6 |
|
nfcv |
|- F/_ i D |
7 |
|
nfv |
|- F/ i f Fn n |
8 |
|
nfv |
|- F/ i ph |
9 |
1
|
bnj1095 |
|- ( ps -> A. i ps ) |
10 |
9
|
nf5i |
|- F/ i ps |
11 |
7 8 10
|
nf3an |
|- F/ i ( f Fn n /\ ph /\ ps ) |
12 |
6 11
|
nfrex |
|- F/ i E. n e. D ( f Fn n /\ ph /\ ps ) |
13 |
12
|
nfab |
|- F/_ i { f | E. n e. D ( f Fn n /\ ph /\ ps ) } |
14 |
2 13
|
nfcxfr |
|- F/_ i K |
15 |
14
|
nfcri |
|- F/ i f e. K |
16 |
|
nfv |
|- F/ i j e. dom f |
17 |
15 16
|
nfan |
|- F/ i ( f e. K /\ j e. dom f ) |
18 |
|
nfv |
|- F/ i ( f ` j ) C_ B |
19 |
17 18
|
nfim |
|- F/ i ( ( f e. K /\ j e. dom f ) -> ( f ` j ) C_ B ) |
20 |
|
eleq1w |
|- ( i = j -> ( i e. dom f <-> j e. dom f ) ) |
21 |
20
|
anbi2d |
|- ( i = j -> ( ( f e. K /\ i e. dom f ) <-> ( f e. K /\ j e. dom f ) ) ) |
22 |
|
fveq2 |
|- ( i = j -> ( f ` i ) = ( f ` j ) ) |
23 |
22
|
sseq1d |
|- ( i = j -> ( ( f ` i ) C_ B <-> ( f ` j ) C_ B ) ) |
24 |
21 23
|
imbi12d |
|- ( i = j -> ( ( ( f e. K /\ i e. dom f ) -> ( f ` i ) C_ B ) <-> ( ( f e. K /\ j e. dom f ) -> ( f ` j ) C_ B ) ) ) |
25 |
19 24
|
sbciegf |
|- ( j e. _V -> ( [. j / i ]. ( ( f e. K /\ i e. dom f ) -> ( f ` i ) C_ B ) <-> ( ( f e. K /\ j e. dom f ) -> ( f ` j ) C_ B ) ) ) |
26 |
25
|
elv |
|- ( [. j / i ]. ( ( f e. K /\ i e. dom f ) -> ( f ` i ) C_ B ) <-> ( ( f e. K /\ j e. dom f ) -> ( f ` j ) C_ B ) ) |
27 |
4 5 26
|
3bitri |
|- ( et' <-> ( ( f e. K /\ j e. dom f ) -> ( f ` j ) C_ B ) ) |