| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1123.4 | 
							 |-  ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj1123.3 | 
							 |-  K = { f | E. n e. D ( f Fn n /\ ph /\ ps ) } | 
						
						
							| 3 | 
							
								
							 | 
							bnj1123.1 | 
							 |-  ( et <-> ( ( f e. K /\ i e. dom f ) -> ( f ` i ) C_ B ) )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj1123.2 | 
							 |-  ( et' <-> [. j / i ]. et )  | 
						
						
							| 5 | 
							
								3
							 | 
							sbcbii | 
							 |-  ( [. j / i ]. et <-> [. j / i ]. ( ( f e. K /\ i e. dom f ) -> ( f ` i ) C_ B ) )  | 
						
						
							| 6 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ i D  | 
						
						
							| 7 | 
							
								
							 | 
							nfv | 
							 |-  F/ i f Fn n  | 
						
						
							| 8 | 
							
								
							 | 
							nfv | 
							 |-  F/ i ph  | 
						
						
							| 9 | 
							
								1
							 | 
							bnj1095 | 
							 |-  ( ps -> A. i ps )  | 
						
						
							| 10 | 
							
								9
							 | 
							nf5i | 
							 |-  F/ i ps  | 
						
						
							| 11 | 
							
								7 8 10
							 | 
							nf3an | 
							 |-  F/ i ( f Fn n /\ ph /\ ps )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							nfrexw | 
							 |-  F/ i E. n e. D ( f Fn n /\ ph /\ ps )  | 
						
						
							| 13 | 
							
								12
							 | 
							nfab | 
							 |-  F/_ i { f | E. n e. D ( f Fn n /\ ph /\ ps ) } | 
						
						
							| 14 | 
							
								2 13
							 | 
							nfcxfr | 
							 |-  F/_ i K  | 
						
						
							| 15 | 
							
								14
							 | 
							nfcri | 
							 |-  F/ i f e. K  | 
						
						
							| 16 | 
							
								
							 | 
							nfv | 
							 |-  F/ i j e. dom f  | 
						
						
							| 17 | 
							
								15 16
							 | 
							nfan | 
							 |-  F/ i ( f e. K /\ j e. dom f )  | 
						
						
							| 18 | 
							
								
							 | 
							nfv | 
							 |-  F/ i ( f ` j ) C_ B  | 
						
						
							| 19 | 
							
								17 18
							 | 
							nfim | 
							 |-  F/ i ( ( f e. K /\ j e. dom f ) -> ( f ` j ) C_ B )  | 
						
						
							| 20 | 
							
								
							 | 
							eleq1w | 
							 |-  ( i = j -> ( i e. dom f <-> j e. dom f ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							anbi2d | 
							 |-  ( i = j -> ( ( f e. K /\ i e. dom f ) <-> ( f e. K /\ j e. dom f ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							fveq2 | 
							 |-  ( i = j -> ( f ` i ) = ( f ` j ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							sseq1d | 
							 |-  ( i = j -> ( ( f ` i ) C_ B <-> ( f ` j ) C_ B ) )  | 
						
						
							| 24 | 
							
								21 23
							 | 
							imbi12d | 
							 |-  ( i = j -> ( ( ( f e. K /\ i e. dom f ) -> ( f ` i ) C_ B ) <-> ( ( f e. K /\ j e. dom f ) -> ( f ` j ) C_ B ) ) )  | 
						
						
							| 25 | 
							
								19 24
							 | 
							sbciegf | 
							 |-  ( j e. _V -> ( [. j / i ]. ( ( f e. K /\ i e. dom f ) -> ( f ` i ) C_ B ) <-> ( ( f e. K /\ j e. dom f ) -> ( f ` j ) C_ B ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							elv | 
							 |-  ( [. j / i ]. ( ( f e. K /\ i e. dom f ) -> ( f ` i ) C_ B ) <-> ( ( f e. K /\ j e. dom f ) -> ( f ` j ) C_ B ) )  | 
						
						
							| 27 | 
							
								4 5 26
							 | 
							3bitri | 
							 |-  ( et' <-> ( ( f e. K /\ j e. dom f ) -> ( f ` j ) C_ B ) )  |