Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( R _FrSe A /\ X e. A /\ Y e. _trCl ( X , A , R ) ) -> R _FrSe A ) |
2 |
|
bnj1127 |
|- ( Y e. _trCl ( X , A , R ) -> Y e. A ) |
3 |
2
|
3ad2ant3 |
|- ( ( R _FrSe A /\ X e. A /\ Y e. _trCl ( X , A , R ) ) -> Y e. A ) |
4 |
|
bnj893 |
|- ( ( R _FrSe A /\ X e. A ) -> _trCl ( X , A , R ) e. _V ) |
5 |
4
|
3adant3 |
|- ( ( R _FrSe A /\ X e. A /\ Y e. _trCl ( X , A , R ) ) -> _trCl ( X , A , R ) e. _V ) |
6 |
|
bnj1029 |
|- ( ( R _FrSe A /\ X e. A ) -> _TrFo ( _trCl ( X , A , R ) , A , R ) ) |
7 |
6
|
3adant3 |
|- ( ( R _FrSe A /\ X e. A /\ Y e. _trCl ( X , A , R ) ) -> _TrFo ( _trCl ( X , A , R ) , A , R ) ) |
8 |
|
simp3 |
|- ( ( R _FrSe A /\ X e. A /\ Y e. _trCl ( X , A , R ) ) -> Y e. _trCl ( X , A , R ) ) |
9 |
|
elisset |
|- ( Y e. _trCl ( X , A , R ) -> E. y y = Y ) |
10 |
9
|
3ad2ant3 |
|- ( ( R _FrSe A /\ X e. A /\ Y e. _trCl ( X , A , R ) ) -> E. y y = Y ) |
11 |
|
df-bnj19 |
|- ( _TrFo ( _trCl ( X , A , R ) , A , R ) <-> A. y e. _trCl ( X , A , R ) _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) |
12 |
|
rsp |
|- ( A. y e. _trCl ( X , A , R ) _pred ( y , A , R ) C_ _trCl ( X , A , R ) -> ( y e. _trCl ( X , A , R ) -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) ) |
13 |
11 12
|
sylbi |
|- ( _TrFo ( _trCl ( X , A , R ) , A , R ) -> ( y e. _trCl ( X , A , R ) -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) ) |
14 |
7 13
|
syl |
|- ( ( R _FrSe A /\ X e. A /\ Y e. _trCl ( X , A , R ) ) -> ( y e. _trCl ( X , A , R ) -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) ) |
15 |
|
eleq1 |
|- ( y = Y -> ( y e. _trCl ( X , A , R ) <-> Y e. _trCl ( X , A , R ) ) ) |
16 |
|
bnj602 |
|- ( y = Y -> _pred ( y , A , R ) = _pred ( Y , A , R ) ) |
17 |
16
|
sseq1d |
|- ( y = Y -> ( _pred ( y , A , R ) C_ _trCl ( X , A , R ) <-> _pred ( Y , A , R ) C_ _trCl ( X , A , R ) ) ) |
18 |
15 17
|
imbi12d |
|- ( y = Y -> ( ( y e. _trCl ( X , A , R ) -> _pred ( y , A , R ) C_ _trCl ( X , A , R ) ) <-> ( Y e. _trCl ( X , A , R ) -> _pred ( Y , A , R ) C_ _trCl ( X , A , R ) ) ) ) |
19 |
14 18
|
syl5ib |
|- ( y = Y -> ( ( R _FrSe A /\ X e. A /\ Y e. _trCl ( X , A , R ) ) -> ( Y e. _trCl ( X , A , R ) -> _pred ( Y , A , R ) C_ _trCl ( X , A , R ) ) ) ) |
20 |
19
|
exlimiv |
|- ( E. y y = Y -> ( ( R _FrSe A /\ X e. A /\ Y e. _trCl ( X , A , R ) ) -> ( Y e. _trCl ( X , A , R ) -> _pred ( Y , A , R ) C_ _trCl ( X , A , R ) ) ) ) |
21 |
10 20
|
mpcom |
|- ( ( R _FrSe A /\ X e. A /\ Y e. _trCl ( X , A , R ) ) -> ( Y e. _trCl ( X , A , R ) -> _pred ( Y , A , R ) C_ _trCl ( X , A , R ) ) ) |
22 |
8 21
|
mpd |
|- ( ( R _FrSe A /\ X e. A /\ Y e. _trCl ( X , A , R ) ) -> _pred ( Y , A , R ) C_ _trCl ( X , A , R ) ) |
23 |
|
biid |
|- ( ( R _FrSe A /\ Y e. A ) <-> ( R _FrSe A /\ Y e. A ) ) |
24 |
|
biid |
|- ( ( _trCl ( X , A , R ) e. _V /\ _TrFo ( _trCl ( X , A , R ) , A , R ) /\ _pred ( Y , A , R ) C_ _trCl ( X , A , R ) ) <-> ( _trCl ( X , A , R ) e. _V /\ _TrFo ( _trCl ( X , A , R ) , A , R ) /\ _pred ( Y , A , R ) C_ _trCl ( X , A , R ) ) ) |
25 |
23 24
|
bnj1124 |
|- ( ( ( R _FrSe A /\ Y e. A ) /\ ( _trCl ( X , A , R ) e. _V /\ _TrFo ( _trCl ( X , A , R ) , A , R ) /\ _pred ( Y , A , R ) C_ _trCl ( X , A , R ) ) ) -> _trCl ( Y , A , R ) C_ _trCl ( X , A , R ) ) |
26 |
1 3 5 7 22 25
|
syl23anc |
|- ( ( R _FrSe A /\ X e. A /\ Y e. _trCl ( X , A , R ) ) -> _trCl ( Y , A , R ) C_ _trCl ( X , A , R ) ) |