Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1128.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
2 |
|
bnj1128.2 |
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
3 |
|
bnj1128.3 |
|- D = ( _om \ { (/) } ) |
4 |
|
bnj1128.4 |
|- B = { f | E. n e. D ( f Fn n /\ ph /\ ps ) } |
5 |
|
bnj1128.5 |
|- ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) ) |
6 |
|
bnj1128.6 |
|- ( th <-> ( ch -> ( f ` i ) C_ A ) ) |
7 |
|
bnj1128.7 |
|- ( ta <-> A. j e. n ( j _E i -> [. j / i ]. th ) ) |
8 |
|
bnj1128.8 |
|- ( ph' <-> [. j / i ]. ph ) |
9 |
|
bnj1128.9 |
|- ( ps' <-> [. j / i ]. ps ) |
10 |
|
bnj1128.10 |
|- ( ch' <-> [. j / i ]. ch ) |
11 |
|
bnj1128.11 |
|- ( th' <-> [. j / i ]. th ) |
12 |
1 2 3 4 5
|
bnj981 |
|- ( Y e. _trCl ( X , A , R ) -> E. f E. n E. i ( ch /\ i e. n /\ Y e. ( f ` i ) ) ) |
13 |
|
simp1 |
|- ( ( ch /\ i e. n /\ Y e. ( f ` i ) ) -> ch ) |
14 |
|
simp2 |
|- ( ( ch /\ i e. n /\ Y e. ( f ` i ) ) -> i e. n ) |
15 |
|
nfv |
|- F/ j i e. n |
16 |
|
nfra1 |
|- F/ j A. j e. n ( j _E i -> [. j / i ]. th ) |
17 |
7 16
|
nfxfr |
|- F/ j ta |
18 |
|
nfv |
|- F/ j ch |
19 |
15 17 18
|
nf3an |
|- F/ j ( i e. n /\ ta /\ ch ) |
20 |
|
nfv |
|- F/ j ( f ` i ) C_ A |
21 |
19 20
|
nfim |
|- F/ j ( ( i e. n /\ ta /\ ch ) -> ( f ` i ) C_ A ) |
22 |
21
|
nf5ri |
|- ( ( ( i e. n /\ ta /\ ch ) -> ( f ` i ) C_ A ) -> A. j ( ( i e. n /\ ta /\ ch ) -> ( f ` i ) C_ A ) ) |
23 |
3
|
bnj1098 |
|- E. j ( ( i =/= (/) /\ i e. n /\ n e. D ) -> ( j e. n /\ i = suc j ) ) |
24 |
|
simpl |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> i =/= (/) ) |
25 |
|
simpr1 |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> i e. n ) |
26 |
5
|
bnj1232 |
|- ( ch -> n e. D ) |
27 |
26
|
3ad2ant3 |
|- ( ( i e. n /\ ta /\ ch ) -> n e. D ) |
28 |
27
|
adantl |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> n e. D ) |
29 |
24 25 28
|
3jca |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> ( i =/= (/) /\ i e. n /\ n e. D ) ) |
30 |
23 29
|
bnj1101 |
|- E. j ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> ( j e. n /\ i = suc j ) ) |
31 |
|
ancl |
|- ( ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> ( j e. n /\ i = suc j ) ) -> ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) /\ ( j e. n /\ i = suc j ) ) ) ) |
32 |
30 31
|
bnj101 |
|- E. j ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) /\ ( j e. n /\ i = suc j ) ) ) |
33 |
|
df-3an |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) <-> ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) /\ ( j e. n /\ i = suc j ) ) ) |
34 |
33
|
imbi2i |
|- ( ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) ) <-> ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) /\ ( j e. n /\ i = suc j ) ) ) ) |
35 |
34
|
exbii |
|- ( E. j ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) ) <-> E. j ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) /\ ( j e. n /\ i = suc j ) ) ) ) |
36 |
32 35
|
mpbir |
|- E. j ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) ) |
37 |
|
bnj213 |
|- _pred ( y , A , R ) C_ A |
38 |
37
|
bnj226 |
|- U_ y e. ( f ` j ) _pred ( y , A , R ) C_ A |
39 |
|
simp21 |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) -> i e. n ) |
40 |
|
simp3r |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) -> i = suc j ) |
41 |
|
biid |
|- ( n e. D <-> n e. D ) |
42 |
|
biid |
|- ( f Fn n <-> f Fn n ) |
43 |
|
vex |
|- j e. _V |
44 |
|
sbcg |
|- ( j e. _V -> ( [. j / i ]. ph <-> ph ) ) |
45 |
43 44
|
ax-mp |
|- ( [. j / i ]. ph <-> ph ) |
46 |
8 45
|
bitr2i |
|- ( ph <-> ph' ) |
47 |
2 9
|
bnj1039 |
|- ( ps' <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
48 |
2 47
|
bitr4i |
|- ( ps <-> ps' ) |
49 |
41 42 46 48
|
bnj887 |
|- ( ( n e. D /\ f Fn n /\ ph /\ ps ) <-> ( n e. D /\ f Fn n /\ ph' /\ ps' ) ) |
50 |
8 9 5 10
|
bnj1040 |
|- ( ch' <-> ( n e. D /\ f Fn n /\ ph' /\ ps' ) ) |
51 |
49 5 50
|
3bitr4i |
|- ( ch <-> ch' ) |
52 |
50
|
bnj1254 |
|- ( ch' -> ps' ) |
53 |
51 52
|
sylbi |
|- ( ch -> ps' ) |
54 |
53
|
3ad2ant3 |
|- ( ( i e. n /\ ta /\ ch ) -> ps' ) |
55 |
54
|
3ad2ant2 |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) -> ps' ) |
56 |
|
simp3l |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) -> j e. n ) |
57 |
27
|
3ad2ant2 |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) -> n e. D ) |
58 |
3
|
bnj923 |
|- ( n e. D -> n e. _om ) |
59 |
|
elnn |
|- ( ( j e. n /\ n e. _om ) -> j e. _om ) |
60 |
58 59
|
sylan2 |
|- ( ( j e. n /\ n e. D ) -> j e. _om ) |
61 |
56 57 60
|
syl2anc |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) -> j e. _om ) |
62 |
47
|
bnj589 |
|- ( ps' <-> A. j e. _om ( suc j e. n -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) |
63 |
|
rsp |
|- ( A. j e. _om ( suc j e. n -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) -> ( j e. _om -> ( suc j e. n -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) ) |
64 |
62 63
|
sylbi |
|- ( ps' -> ( j e. _om -> ( suc j e. n -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) ) |
65 |
|
eleq1 |
|- ( i = suc j -> ( i e. n <-> suc j e. n ) ) |
66 |
|
fveqeq2 |
|- ( i = suc j -> ( ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) <-> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) |
67 |
65 66
|
imbi12d |
|- ( i = suc j -> ( ( i e. n -> ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) <-> ( suc j e. n -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) ) |
68 |
67
|
imbi2d |
|- ( i = suc j -> ( ( j e. _om -> ( i e. n -> ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) <-> ( j e. _om -> ( suc j e. n -> ( f ` suc j ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) ) ) |
69 |
64 68
|
syl5ibr |
|- ( i = suc j -> ( ps' -> ( j e. _om -> ( i e. n -> ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) ) ) |
70 |
40 55 61 69
|
syl3c |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) -> ( i e. n -> ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) ) |
71 |
39 70
|
mpd |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) -> ( f ` i ) = U_ y e. ( f ` j ) _pred ( y , A , R ) ) |
72 |
38 71
|
bnj1262 |
|- ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) /\ ( j e. n /\ i = suc j ) ) -> ( f ` i ) C_ A ) |
73 |
36 72
|
bnj1023 |
|- E. j ( ( i =/= (/) /\ ( i e. n /\ ta /\ ch ) ) -> ( f ` i ) C_ A ) |
74 |
5
|
bnj1247 |
|- ( ch -> ph ) |
75 |
74
|
3ad2ant3 |
|- ( ( i e. n /\ ta /\ ch ) -> ph ) |
76 |
|
bnj213 |
|- _pred ( X , A , R ) C_ A |
77 |
|
fveq2 |
|- ( i = (/) -> ( f ` i ) = ( f ` (/) ) ) |
78 |
1
|
biimpi |
|- ( ph -> ( f ` (/) ) = _pred ( X , A , R ) ) |
79 |
77 78
|
sylan9eq |
|- ( ( i = (/) /\ ph ) -> ( f ` i ) = _pred ( X , A , R ) ) |
80 |
76 79
|
bnj1262 |
|- ( ( i = (/) /\ ph ) -> ( f ` i ) C_ A ) |
81 |
75 80
|
sylan2 |
|- ( ( i = (/) /\ ( i e. n /\ ta /\ ch ) ) -> ( f ` i ) C_ A ) |
82 |
73 81
|
bnj1109 |
|- E. j ( ( i e. n /\ ta /\ ch ) -> ( f ` i ) C_ A ) |
83 |
22 82
|
bnj1131 |
|- ( ( i e. n /\ ta /\ ch ) -> ( f ` i ) C_ A ) |
84 |
83
|
3expia |
|- ( ( i e. n /\ ta ) -> ( ch -> ( f ` i ) C_ A ) ) |
85 |
84 6
|
sylibr |
|- ( ( i e. n /\ ta ) -> th ) |
86 |
3 5 7 85
|
bnj1133 |
|- ( ch -> A. i e. n th ) |
87 |
6
|
ralbii |
|- ( A. i e. n th <-> A. i e. n ( ch -> ( f ` i ) C_ A ) ) |
88 |
86 87
|
sylib |
|- ( ch -> A. i e. n ( ch -> ( f ` i ) C_ A ) ) |
89 |
|
rsp |
|- ( A. i e. n ( ch -> ( f ` i ) C_ A ) -> ( i e. n -> ( ch -> ( f ` i ) C_ A ) ) ) |
90 |
88 89
|
syl |
|- ( ch -> ( i e. n -> ( ch -> ( f ` i ) C_ A ) ) ) |
91 |
13 14 13 90
|
syl3c |
|- ( ( ch /\ i e. n /\ Y e. ( f ` i ) ) -> ( f ` i ) C_ A ) |
92 |
|
simp3 |
|- ( ( ch /\ i e. n /\ Y e. ( f ` i ) ) -> Y e. ( f ` i ) ) |
93 |
91 92
|
sseldd |
|- ( ( ch /\ i e. n /\ Y e. ( f ` i ) ) -> Y e. A ) |
94 |
93
|
2eximi |
|- ( E. n E. i ( ch /\ i e. n /\ Y e. ( f ` i ) ) -> E. n E. i Y e. A ) |
95 |
12 94
|
bnj593 |
|- ( Y e. _trCl ( X , A , R ) -> E. f E. n E. i Y e. A ) |
96 |
|
19.9v |
|- ( E. f E. n E. i Y e. A <-> E. n E. i Y e. A ) |
97 |
|
19.9v |
|- ( E. n E. i Y e. A <-> E. i Y e. A ) |
98 |
|
19.9v |
|- ( E. i Y e. A <-> Y e. A ) |
99 |
96 97 98
|
3bitri |
|- ( E. f E. n E. i Y e. A <-> Y e. A ) |
100 |
95 99
|
sylib |
|- ( Y e. _trCl ( X , A , R ) -> Y e. A ) |