Metamath Proof Explorer


Theorem bnj1131

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1131.1
|- ( ph -> A. x ph )
bnj1131.2
|- E. x ph
Assertion bnj1131
|- ph

Proof

Step Hyp Ref Expression
1 bnj1131.1
 |-  ( ph -> A. x ph )
2 bnj1131.2
 |-  E. x ph
3 1 19.9h
 |-  ( E. x ph <-> ph )
4 2 3 mpbi
 |-  ph