| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj1133.3 | 
							 |-  D = ( _om \ { (/) } ) | 
						
						
							| 2 | 
							
								
							 | 
							bnj1133.5 | 
							 |-  ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj1133.7 | 
							 |-  ( ta <-> A. j e. n ( j _E i -> [. j / i ]. th ) )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj1133.8 | 
							 |-  ( ( i e. n /\ ta ) -> th )  | 
						
						
							| 5 | 
							
								1
							 | 
							bnj1071 | 
							 |-  ( n e. D -> _E Fr n )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							bnj769 | 
							 |-  ( ch -> _E Fr n )  | 
						
						
							| 7 | 
							
								
							 | 
							impexp | 
							 |-  ( ( ( i e. n /\ ta ) -> th ) <-> ( i e. n -> ( ta -> th ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							bicomi | 
							 |-  ( ( i e. n -> ( ta -> th ) ) <-> ( ( i e. n /\ ta ) -> th ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							albii | 
							 |-  ( A. i ( i e. n -> ( ta -> th ) ) <-> A. i ( ( i e. n /\ ta ) -> th ) )  | 
						
						
							| 10 | 
							
								9 4
							 | 
							mpgbir | 
							 |-  A. i ( i e. n -> ( ta -> th ) )  | 
						
						
							| 11 | 
							
								
							 | 
							df-ral | 
							 |-  ( A. i e. n ( ta -> th ) <-> A. i ( i e. n -> ( ta -> th ) ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							mpbir | 
							 |-  A. i e. n ( ta -> th )  | 
						
						
							| 13 | 
							
								
							 | 
							vex | 
							 |-  n e. _V  | 
						
						
							| 14 | 
							
								13 3
							 | 
							bnj110 | 
							 |-  ( ( _E Fr n /\ A. i e. n ( ta -> th ) ) -> A. i e. n th )  | 
						
						
							| 15 | 
							
								6 12 14
							 | 
							sylancl | 
							 |-  ( ch -> A. i e. n th )  |