Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1137.1 |
|- B = ( _pred ( X , A , R ) u. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) |
2 |
1
|
eleq2i |
|- ( v e. B <-> v e. ( _pred ( X , A , R ) u. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) ) |
3 |
|
elun |
|- ( v e. ( _pred ( X , A , R ) u. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) <-> ( v e. _pred ( X , A , R ) \/ v e. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) ) |
4 |
2 3
|
bitri |
|- ( v e. B <-> ( v e. _pred ( X , A , R ) \/ v e. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) ) |
5 |
|
bnj213 |
|- _pred ( X , A , R ) C_ A |
6 |
5
|
sseli |
|- ( v e. _pred ( X , A , R ) -> v e. A ) |
7 |
|
bnj906 |
|- ( ( R _FrSe A /\ v e. A ) -> _pred ( v , A , R ) C_ _trCl ( v , A , R ) ) |
8 |
7
|
adantlr |
|- ( ( ( R _FrSe A /\ X e. A ) /\ v e. A ) -> _pred ( v , A , R ) C_ _trCl ( v , A , R ) ) |
9 |
6 8
|
sylan2 |
|- ( ( ( R _FrSe A /\ X e. A ) /\ v e. _pred ( X , A , R ) ) -> _pred ( v , A , R ) C_ _trCl ( v , A , R ) ) |
10 |
|
bnj906 |
|- ( ( R _FrSe A /\ X e. A ) -> _pred ( X , A , R ) C_ _trCl ( X , A , R ) ) |
11 |
10
|
sselda |
|- ( ( ( R _FrSe A /\ X e. A ) /\ v e. _pred ( X , A , R ) ) -> v e. _trCl ( X , A , R ) ) |
12 |
|
bnj18eq1 |
|- ( y = v -> _trCl ( y , A , R ) = _trCl ( v , A , R ) ) |
13 |
12
|
ssiun2s |
|- ( v e. _trCl ( X , A , R ) -> _trCl ( v , A , R ) C_ U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) |
14 |
11 13
|
syl |
|- ( ( ( R _FrSe A /\ X e. A ) /\ v e. _pred ( X , A , R ) ) -> _trCl ( v , A , R ) C_ U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) |
15 |
9 14
|
sstrd |
|- ( ( ( R _FrSe A /\ X e. A ) /\ v e. _pred ( X , A , R ) ) -> _pred ( v , A , R ) C_ U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) |
16 |
|
bnj1147 |
|- _trCl ( y , A , R ) C_ A |
17 |
16
|
rgenw |
|- A. y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ A |
18 |
|
iunss |
|- ( U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ A <-> A. y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ A ) |
19 |
17 18
|
mpbir |
|- U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ A |
20 |
19
|
sseli |
|- ( v e. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) -> v e. A ) |
21 |
20 8
|
sylan2 |
|- ( ( ( R _FrSe A /\ X e. A ) /\ v e. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) -> _pred ( v , A , R ) C_ _trCl ( v , A , R ) ) |
22 |
|
bnj1125 |
|- ( ( R _FrSe A /\ X e. A /\ y e. _trCl ( X , A , R ) ) -> _trCl ( y , A , R ) C_ _trCl ( X , A , R ) ) |
23 |
22
|
3expia |
|- ( ( R _FrSe A /\ X e. A ) -> ( y e. _trCl ( X , A , R ) -> _trCl ( y , A , R ) C_ _trCl ( X , A , R ) ) ) |
24 |
23
|
ralrimiv |
|- ( ( R _FrSe A /\ X e. A ) -> A. y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ _trCl ( X , A , R ) ) |
25 |
|
iunss |
|- ( U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ _trCl ( X , A , R ) <-> A. y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ _trCl ( X , A , R ) ) |
26 |
24 25
|
sylibr |
|- ( ( R _FrSe A /\ X e. A ) -> U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ _trCl ( X , A , R ) ) |
27 |
26
|
sselda |
|- ( ( ( R _FrSe A /\ X e. A ) /\ v e. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) -> v e. _trCl ( X , A , R ) ) |
28 |
27 13
|
syl |
|- ( ( ( R _FrSe A /\ X e. A ) /\ v e. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) -> _trCl ( v , A , R ) C_ U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) |
29 |
21 28
|
sstrd |
|- ( ( ( R _FrSe A /\ X e. A ) /\ v e. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) -> _pred ( v , A , R ) C_ U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) |
30 |
15 29
|
jaodan |
|- ( ( ( R _FrSe A /\ X e. A ) /\ ( v e. _pred ( X , A , R ) \/ v e. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) ) -> _pred ( v , A , R ) C_ U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) |
31 |
|
ssun2 |
|- U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ ( _pred ( X , A , R ) u. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) |
32 |
31 1
|
sseqtrri |
|- U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ B |
33 |
30 32
|
sstrdi |
|- ( ( ( R _FrSe A /\ X e. A ) /\ ( v e. _pred ( X , A , R ) \/ v e. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) ) -> _pred ( v , A , R ) C_ B ) |
34 |
4 33
|
sylan2b |
|- ( ( ( R _FrSe A /\ X e. A ) /\ v e. B ) -> _pred ( v , A , R ) C_ B ) |
35 |
34
|
ralrimiva |
|- ( ( R _FrSe A /\ X e. A ) -> A. v e. B _pred ( v , A , R ) C_ B ) |
36 |
|
df-bnj19 |
|- ( _TrFo ( B , A , R ) <-> A. v e. B _pred ( v , A , R ) C_ B ) |
37 |
35 36
|
sylibr |
|- ( ( R _FrSe A /\ X e. A ) -> _TrFo ( B , A , R ) ) |