Metamath Proof Explorer


Theorem bnj1142

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1142.1
|- ( ph -> A. x ( x e. A -> ps ) )
Assertion bnj1142
|- ( ph -> A. x e. A ps )

Proof

Step Hyp Ref Expression
1 bnj1142.1
 |-  ( ph -> A. x ( x e. A -> ps ) )
2 df-ral
 |-  ( A. x e. A ps <-> A. x ( x e. A -> ps ) )
3 1 2 sylibr
 |-  ( ph -> A. x e. A ps )