Step |
Hyp |
Ref |
Expression |
1 |
|
biid |
|- ( ( f ` (/) ) = _pred ( X , A , R ) <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
2 |
|
biid |
|- ( A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
3 |
|
eqid |
|- ( _om \ { (/) } ) = ( _om \ { (/) } ) |
4 |
|
eqid |
|- { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } = { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } |
5 |
|
biid |
|- ( ( n e. ( _om \ { (/) } ) /\ f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) <-> ( n e. ( _om \ { (/) } ) /\ f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) |
6 |
|
biid |
|- ( ( ( i =/= (/) /\ i e. n /\ ( n e. ( _om \ { (/) } ) /\ f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) /\ ( j e. n /\ i = suc j ) ) <-> ( ( i =/= (/) /\ i e. n /\ ( n e. ( _om \ { (/) } ) /\ f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) /\ ( j e. n /\ i = suc j ) ) ) |
7 |
1 2 3 4 5 6
|
bnj1145 |
|- _trCl ( X , A , R ) C_ A |